
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

c©1997 by CRC Press, Inc.

Chapter4
Public-Key Parameters

Contents in Brief

4.1 Introduction . 133
4.2 Probabilistic primality tests . 135
4.3 (True) Primality tests . 142
4.4 Prime number generation . 145
4.5 Irreducible polynomials over Zp 154
4.6 Generators and elements of high order 160
4.7 Notes and further references . 165

4.1 Introduction

The efficient generation of public-key parameters is a prerequisite in public-key systems.
A specific example is the requirement of a prime number p to define a finite field Zp for
use in the Diffie-Hellman key agreement protocol and its derivatives (§12.6). In this case,
an element of high order in Z∗p is also required. Another example is the requirement of
primes p and q for an RSA modulus n = pq (§8.2). In this case, the prime must be of
sufficient size, and be “random” in the sense that the probability of any particular prime
being selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. Prime numbers may be
required to have certain additional properties, in order that they do not make the associated
cryptosystems susceptible to specialized attacks. A third example is the requirement of an
irreducible polynomial f(x) of degree m over the finite field Zp for constructing the finite
field Fpm . In this case, an element of high order in F∗pm is also required.

Chapter outline

The remainder of §4.1 introduces basic concepts relevant to prime number generation and
summarizes some results on the distribution of prime numbers. Probabilistic primality tests,
the most important of which is the Miller-Rabin test, are presented in §4.2. True primality
tests by which arbitrary integers can be proven to be prime are the topic of §4.3; since these
tests are generally more computationally intensive than probabilistic primality tests, they
are not described in detail. §4.4 presents four algorithms for generating prime numbers,
strong primes, and provable primes. §4.5 describes techniques for constructing irreducible
and primitive polynomials, while §4.6 considers the production of generators and elements
of high orders in groups. §4.7 concludes with chapter notes and references.

133

134 Ch. 4 Public-Key Parameters

4.1.1 Approaches to generating large prime numbers

To motivate the organization of this chapter and introduce many of the relevant concepts,
the problem of generating large prime numbers is first considered. The most natural method
is to generate a random number n of appropriate size, and check if it is prime. This can
be done by checking whether n is divisible by any of the prime numbers ≤

√
n. While

more efficient methods are required in practice, to motivate further discussion consider the
following approach:

1. Generate as candidate a random odd number n of appropriate size.
2. Test n for primality.
3. If n is composite, return to the first step.

A slight modification is to consider candidates restricted to some search sequence start-
ing from n; a trivial search sequence which may be used is n, n+2, n+4, n+6, Us-
ing specific search sequences may allow one to increase the expectation that a candidate is
prime, and to find primes possessing certain additional desirable properties a priori.

In step 2, the test for primality might be either a test which proves that the candidate
is prime (in which case the outcome of the generator is called a provable prime), or a test
which establishes a weaker result, such as thatn is “probably prime” (in which case the out-
come of the generator is called a probable prime). In the latter case, careful consideration
must be given to the exact meaning of this expression. Most so-called probabilistic primal-
ity tests are absolutely correct when they declare candidates n to be composite, but do not
provide a mathematical proof that n is prime in the case when such a number is declared to
be “probably” so. In the latter case, however, when used properly one may often be able to
draw conclusions more than adequate for the purpose at hand. For this reason, such tests are
more properly called compositeness tests than probabilistic primality tests. True primality
tests, which allow one to conclude with mathematical certainty that a number is prime, also
exist, but generally require considerably greater computational resources.

While (true) primality tests can determine (with mathematical certainty) whether a typ-
ically random candidate number is prime, other techniques exist whereby candidates n are
specially constructed such that it can be established by mathematical reasoning whether a
candidate actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniques for prime number generation is the use
of randomness. Candidates are typically generated as a function of a random input. The
technique used to judge the primality of the candidate, however, may or may not itself use
random numbers. If it does not, the technique is deterministic, and the result is reproducible;
if it does, the technique is said to be randomized. Both deterministic and randomized prob-
abilistic primality tests exist.

In some cases, prime numbers are required which have additional properties. For ex-
ample, to make the extraction of discrete logarithms in Z∗p resistant to an algorithm due to
Pohlig and Hellman (§3.6.4), it is a requirement that p−1 have a large prime divisor. Thus
techniques for generating public-key parameters, such as prime numbers, of special form
need to be considered.

4.1.2 Distribution of prime numbers

Let π(x) denote the number of primes in the interval [2, x]. The prime number theorem
(Fact 2.95) states that π(x) ∼ x

lnx .1 In other words, the number of primes in the interval

1If f(x) and g(x) are two functions, then f(x) ∼ g(x) means that limx→∞
f(x)
g(x)

= 1.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 135

[2, x] is approximately equal to x
lnx . The prime numbers are quite uniformly distributed, as

the following three results illustrate.

4.1 Fact (Dirichlet theorem) If gcd(a, n) = 1, then there are infinitely many primes congruent
to a modulo n.

A more explicit version of Dirichlet’s theorem is the following.

4.2 Fact Let π(x, n, a) denote the number of primes in the interval [2, x] which are congruent
to a modulo n, where gcd(a, n) = 1. Then

π(x, n, a) ∼
x

φ(n) ln x
.

In other words, the prime numbers are roughly uniformly distributed among the φ(n) con-
gruence classes in Z∗n, for any value of n.

4.3 Fact (approximation for thenth prime number) Let pn denote thenth prime number. Then
pn ∼ n lnn. More explicitly,

n lnn < pn < n(lnn+ ln lnn) for n ≥ 6.

4.2 Probabilistic primality tests

The algorithms in this section are methods by which arbitrary positive integers are tested to
provide partial information regarding their primality. More specifically, probabilistic pri-
mality tests have the following framework. For each odd positive integer n, a set W (n) ⊂
Zn is defined such that the following properties hold:

(i) given a ∈ Zn, it can be checked in deterministic polynomial time whether a ∈W (n);
(ii) if n is prime, then W (n) = ∅ (the empty set); and

(iii) if n is composite, then#W (n) ≥ n
2 .

4.4 Definition If n is composite, the elements of W (n) are called witnesses to the compos-
iteness of n, and the elements of the complementary set L(n) = Zn − W (n) are called
liars.

A probabilistic primality test utilizes these properties of the setsW (n) in the following
manner. Suppose that n is an integer whose primality is to be determined. An integer a ∈
Zn is chosen at random, and it is checked if a ∈ W (n). The test outputs “composite” if
a ∈W (n), and outputs “prime” if a 6∈W (n). If indeed a ∈W (n), then n is said to fail the
primality test for the base a; in this case, n is surely composite. If a 6∈W (n), then n is said
to pass the primality test for the base a; in this case, no conclusion with absolute certainty
can be drawn about the primality of n, and the declaration “prime” may be incorrect.2

Any single execution of this test which declares “composite” establishes this with cer-
tainty. On the other hand, successive independent runs of the test all of which return the an-
swer “prime” allow the confidence that the input is indeed prime to be increased to whatever
level is desired — the cumulative probability of error is multiplicative over independent tri-
als. If the test is run t times independently on the composite number n, the probability that
n is declared “prime” all t times (i.e., the probability of error) is at most (12)

t.

2This discussion illustrates why a probabilistic primality test is more properly called a compositeness test.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

136 Ch. 4 Public-Key Parameters

4.5 Definition An integer n which is believed to be prime on the basis of a probabilistic pri-
mality test is called a probable prime.

Two probabilistic primality tests are covered in this section: the Solovay-Strassen test
(§4.2.2) and the Miller-Rabin test (§4.2.3). For historical reasons, the Fermat test is first
discussed in §4.2.1; this test is not truly a probabilistic primality test since it usually fails
to distinguish between prime numbers and special composite integers called Carmichael
numbers.

4.2.1 Fermat’s test

Fermat’s theorem (Fact 2.127) asserts that ifn is a prime and a is any integer, 1 ≤ a ≤ n−1,
then an−1 ≡ 1 (mod n). Therefore, given an integer nwhose primality is under question,
finding any integer a in this interval such that this equivalence is not true suffices to prove
that n is composite.

4.6 Definition Let n be an odd composite integer. An integer a, 1 ≤ a ≤ n − 1, such that
an−1 6≡ 1 (mod n) is called a Fermat witness (to compositeness) for n.

Conversely, finding an integer a between 1 and n − 1 such that an−1 ≡ 1 (mod n)
makes n appear to be a prime in the sense that it satisfies Fermat’s theorem for the base a.
This motivates the following definition and Algorithm 4.9.

4.7 Definition Let n be an odd composite integer and let a be an integer, 1 ≤ a ≤ n − 1.
Then n is said to be a pseudoprime to the base a if an−1 ≡ 1 (mod n). The integer a is
called a Fermat liar (to primality) for n.

4.8 Example (pseudoprime) The composite integer n = 341 (= 11 × 31) is a pseudoprime
to the base 2 since 2340 ≡ 1 (mod 341). �

4.9 Algorithm Fermat primality test

FERMAT(n,t)
INPUT: an odd integer n ≥ 3 and security parameter t ≥ 1.
OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”

1. For i from 1 to t do the following:

1.1 Choose a random integer a, 2 ≤ a ≤ n− 2.
1.2 Compute r = an−1 mod n using Algorithm 2.143.
1.3 If r 6= 1 then return(“composite”).

2. Return(“prime”).

If Algorithm 4.9 declares “composite”, then n is certainly composite. On the other
hand, if the algorithm declares “prime” then no proof is provided that n is indeed prime.
Nonetheless, since pseudoprimes for a given base a are known to be rare, Fermat’s test
provides a correct answer on most inputs; this, however, is quite distinct from providing
a correct answer most of the time (e.g., if run with different bases) on every input. In fact,
it does not do the latter because there are (even rarer) composite numbers which are pseu-
doprimes to every base a for which gcd(a, n) = 1.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 137

4.10 Definition A Carmichael number n is a composite integer such that an−1 ≡ 1 (mod n)
for all integers a which satisfy gcd(a, n) = 1.

If n is a Carmichael number, then the only Fermat witnesses for n are those integers
a, 1 ≤ a ≤ n − 1, for which gcd(a, n) > 1. Thus, if the prime factors of n are all large,
then with high probability the Fermat test declares that n is “prime”, even if the number of
iterations t is large. This deficiency in the Fermat test is removed in the Solovay-Strassen
and Miller-Rabin probabilistic primality tests by relying on criteria which are stronger than
Fermat’s theorem.

This subsection is concluded with some facts about Carmichael numbers. If the prime
factorization of n is known, then Fact 4.11 can be used to easily determine whether n is a
Carmichael number.

4.11 Fact (necessary and sufficient conditions for Carmichael numbers) A composite integer
n is a Carmichael number if and only if the following two conditions are satisfied:

(i) n is square-free, i.e., n is not divisible by the square of any prime; and
(ii) p− 1 divides n− 1 for every prime divisor p of n.

A consequence of Fact 4.11 is the following.

4.12 Fact Every Carmichael number is the product of at least three distinct primes.

4.13 Fact (bounds for the number of Carmichael numbers)

(i) There are an infinite number of Carmichael numbers. In fact, there are more than
n2/7 Carmichael numbers in the interval [2, n], once n is sufficiently large.

(ii) The best upper bound known for C(n), the number of Carmichael numbers≤ n, is:

C(n) ≤ n1−{1+o(1)} ln ln lnn/ ln lnn for n→∞.

The smallest Carmichael number is n = 561 = 3 × 11 × 17. Carmichael numbers are
relatively scarce; there are only 105212 Carmichael numbers≤ 1015.

4.2.2 Solovay-Strassen test

The Solovay-Strassen probabilistic primality test was the first such test popularized by the
advent of public-key cryptography, in particular the RSA cryptosystem. There is no longer
any reason to use this test, because an alternative is available (the Miller-Rabin test) which
is both more efficient and always at least as correct (see Note 4.33). Discussion is nonethe-
less included for historical completeness and to clarify this exact point, since many people
continue to reference this test.

Recall (§2.4.5) that
(
a
n

)
denotes the Jacobi symbol, and is equivalent to the Legendre

symbol if n is prime. The Solovay-Strassen test is based on the following fact.

4.14 Fact (Euler’s criterion) Let n be an odd prime. Then a(n−1)/2 ≡
(
a
n

)
(mod n) for all

integers a which satisfy gcd(a, n) = 1.

Fact 4.14 motivates the following definitions.

4.15 Definition Let n be an odd composite integer and let a be an integer, 1 ≤ a ≤ n− 1.

(i) If either gcd(a, n) > 1 or a(n−1)/2 6≡
(
a
n

)
(mod n), then a is called an Euler witness

(to compositeness) for n.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

138 Ch. 4 Public-Key Parameters

(ii) Otherwise, i.e., if gcd(a, n) = 1 and a(n−1)/2 ≡
(
a
n

)
(mod n), then n is said to be

an Euler pseudoprime to the base a. (That is, n acts like a prime in that it satisfies
Euler’s criterion for the particular base a.) The integer a is called an Euler liar (to
primality) for n.

4.16 Example (Euler pseudoprime) The composite integer 91 (= 7× 13) is an Euler pseudo-
prime to the base 9 since 945 ≡ 1 (mod 91) and

(
9
91

)
= 1. �

Euler’s criterion (Fact 4.14) can be used as a basis for a probabilistic primality test be-
cause of the following result.

4.17 Fact Let n be an odd composite integer. Then at most φ(n)/2 of all the numbers a, 1 ≤
a ≤ n − 1, are Euler liars for n (Definition 4.15). Here, φ is the Euler phi function (Defi-
nition 2.100).

4.18 Algorithm Solovay-Strassen probabilistic primality test

SOLOVAY-STRASSEN(n,t)
INPUT: an odd integer n ≥ 3 and security parameter t ≥ 1.
OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”

1. For i from 1 to t do the following:

1.1 Choose a random integer a, 2 ≤ a ≤ n− 2.
1.2 Compute r = a(n−1)/2 mod n using Algorithm 2.143.
1.3 If r 6= 1 and r 6= n− 1 then return(“composite”).
1.4 Compute the Jacobi symbol s =

(
a
n

)
using Algorithm 2.149.

1.5 If r 6≡ s (mod n) then return (“composite”).

2. Return(“prime”).

If gcd(a, n) = d, then d is a divisor of r = a(n−1)/2 mod n. Hence, testing whether
r 6= 1 is step 1.3, eliminates the necessity of testing whether gcd(a, n) 6= 1. If Algo-
rithm 4.18 declares “composite”, then n is certainly composite because prime numbers do
not violate Euler’s criterion (Fact 4.14). Equivalently, if n is actually prime, then the algo-
rithm always declares “prime”. On the other hand, if n is actually composite, then since the
bases a in step 1.1 are chosen independently during each iteration of step 1, Fact 4.17 can be
used to deduce the following probability of the algorithm erroneously declaring “prime”.

4.19 Fact (Solovay-Strassen error-probability bound) Let n be an odd composite integer. The
probability that SOLOVAY-STRASSEN(n,t) declares n to be “prime” is less than (12)

t.

4.2.3 Miller-Rabin test

The probabilistic primality test used most in practice is the Miller-Rabin test, also known
as the strong pseudoprime test. The test is based on the following fact.

4.20 Fact Let n be an odd prime, and let n − 1 = 2sr where r is odd. Let a be any integer
such that gcd(a, n) = 1. Then either ar ≡ 1 (mod n) or a2

jr ≡ −1 (mod n) for some
j, 0 ≤ j ≤ s− 1.

Fact 4.20 motivates the following definitions.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 139

4.21 Definition Let n be an odd composite integer and let n− 1 = 2sr where r is odd. Let a
be an integer in the interval [1, n− 1].

(i) If ar 6≡ 1 (mod n) and if a2
jr 6≡ −1 (mod n) for all j, 0 ≤ j ≤ s − 1, then a is

called a strong witness (to compositeness) for n.
(ii) Otherwise, i.e., if either ar ≡ 1 (mod n) or a2

jr ≡ −1 (mod n) for some j, 0 ≤
j ≤ s − 1, then n is said to be a strong pseudoprime to the base a. (That is, n acts
like a prime in that it satisfies Fact 4.20 for the particular base a.) The integer a is
called a strong liar (to primality) for n.

4.22 Example (strong pseudoprime) Consider the composite integer n = 91 (= 7×13). Since
91− 1 = 90 = 2× 45, s = 1 and r = 45. Since 9r = 945 ≡ 1 (mod 91), 91 is a strong
pseudoprime to the base 9. The set of all strong liars for 91 is:

{1, 9, 10, 12, 16, 17, 22, 29, 38, 53, 62, 69, 74, 75, 79, 81, 82, 90}.

Notice that the number of strong liars for 91 is 18 = φ(91)/4, where φ is the Euler phi
function (cf. Fact 4.23). �
Fact 4.20 can be used as a basis for a probabilistic primality test due to the following result.

4.23 Fact If n is an odd composite integer, then at most 14 of all the numbers a, 1 ≤ a ≤ n−1,
are strong liars for n. In fact, if n 6= 9, the number of strong liars for n is at most φ(n)/4,
where φ is the Euler phi function (Definition 2.100).

4.24 Algorithm Miller-Rabin probabilistic primality test

MILLER-RABIN(n,t)
INPUT: an odd integer n ≥ 3 and security parameter t ≥ 1.
OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”

1. Write n− 1 = 2sr such that r is odd.
2. For i from 1 to t do the following:

2.1 Choose a random integer a, 2 ≤ a ≤ n− 2.
2.2 Compute y = ar mod n using Algorithm 2.143.
2.3 If y 6= 1 and y 6= n− 1 then do the following:

j←1.
While j ≤ s− 1 and y 6= n− 1 do the following:

Compute y←y2 mod n.
If y = 1 then return(“composite”).
j←j + 1.

If y 6= n− 1 then return (“composite”).
3. Return(“prime”).

Algorithm 4.24 tests whether each base a satisfies the conditions of Definition 4.21(i).
In the fifth line of step 2.3, if y = 1, then a2

jr ≡ 1 (mod n). Since it is also the case that
a2
j−1r 6≡ ±1 (mod n), it follows from Fact 3.18 that n is composite (in fact gcd(a2

j−1r−
1, n) is a non-trivial factor of n). In the seventh line of step 2.3, if y 6= n − 1, then a is a
strong witness for n. If Algorithm 4.24 declares “composite”, then n is certainly compos-
ite because prime numbers do not violate Fact 4.20. Equivalently, if n is actually prime,
then the algorithm always declares “prime”. On the other hand, if n is actually composite,
then Fact 4.23 can be used to deduce the following probability of the algorithm erroneously
declaring “prime”.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

140 Ch. 4 Public-Key Parameters

4.25 Fact (Miller-Rabin error-probability bound) For any odd composite integer n, the proba-
bility that MILLER-RABIN(n,t) declares n to be “prime” is less than (14)

t.

4.26 Remark (number of strong liars) For most composite integers n, the number of strong
liars for n is actually much smaller than the upper bound of φ(n)/4 given in Fact 4.23.
Consequently, the Miller-Rabin error-probability bound is much smaller than (14)

t for most
positive integers n.

4.27 Example (some composite integers have very few strong liars) The only strong liars for
the composite integer n = 105 (= 3× 5× 7) are 1 and 104. More generally, if k ≥ 2 and
n is the product of the first k odd primes, there are only 2 strong liars for n, namely 1 and
n− 1. �

4.28 Remark (fixed bases in Miller-Rabin) If a1 and a2 are strong liars for n, their product
a1a2 is very likely, but not certain, to also be a strong liar for n. A strategy that is some-
times employed is to fix the bases a in the Miller-Rabin algorithm to be the first few primes
(composite bases are ignored because of the preceding statement), instead of choosing them
at random.

4.29 Definition Let p1, p2, . . . , pt denote the first t primes. Then ψt is defined to be the small-
est positive composite integer which is a strong pseudoprime to all the bases p1, p2, . . . , pt.

The numbers ψt can be interpreted as follows: to determine the primality of any integer
n < ψt, it is sufficient to apply the Miller-Rabin algorithm to n with the bases a being the
first t prime numbers. With this choice of bases, the answer returned by Miller-Rabin is
always correct. Table 4.1 gives the value of ψt for 1 ≤ t ≤ 8.

t ψt

1 2047
2 1373653
3 25326001
4 3215031751
5 2152302898747
6 3474749660383
7 341550071728321
8 341550071728321

Table 4.1: Smallest strong pseudoprimes. The table lists values ofψt, the smallest positive composite
integer that is a strong pseudoprime to each of the first t prime bases, for 1 ≤ t ≤ 8.

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin

Fact 4.30 describes the relationships between Fermat liars, Euler liars, and strong liars (see
Definitions 4.7, 4.15, and 4.21).

4.30 Fact Let n be an odd composite integer.

(i) If a is an Euler liar for n, then it is also a Fermat liar for n.
(ii) If a is a strong liar for n, then it is also an Euler liar for n.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.2 Probabilistic primality tests 141

4.31 Example (Fermat, Euler, strong liars) Consider the composite integer n = 65 (= 5 ×
13). The Fermat liars for 65 are {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64}.
The Euler liars for 65 are {1, 8, 14, 18, 47, 51, 57, 64}, while the strong liars for 65 are
{1, 8, 18, 47, 57, 64}. �

For a fixed composite candidate n, the situation is depicted in Figure 4.1. This set-

strong liars for n

Fermat liars for n

Euler liars for n

Figure 4.1: Relationships between Fermat, Euler, and strong liars for a composite integer n.

tles the question of the relative accuracy of the Fermat, Solovay-Strassen, and Miller-Rabin
tests, not only in the sense of the relative correctness of each test on a fixed candidate n, but
also in the sense that given n, the specified containments hold for each randomly chosen
base a. Thus, from a correctness point of view, the Miller-Rabin test is never worse than the
Solovay-Strassen test, which in turn is never worse than the Fermat test. As the following
result shows, there are, however, some composite integersn for which the Solovay-Strassen
and Miller-Rabin tests are equally good.

4.32 Fact If n ≡ 3 (mod 4), then a is an Euler liar for n if and only if it is a strong liar for n.

What remains is a comparison of the computational costs. While the Miller-Rabin test
may appear more complex, it actually requires, at worst, the same amount of computation
as Fermat’s test in terms of modular multiplications; thus the Miller-Rabin test is better than
Fermat’s test in all regards. At worst, the sequence of computations defined in MILLER-
RABIN(n,1) requires the equivalent of computing a(n−1)/2 mod n. It is also the case that
MILLER-RABIN(n,1) requires less computation than SOLOVAY-STRASSEN(n,1), the
latter requiring the computation of a(n−1)/2 mod n and possibly a further Jacobi symbol
computation. For this reason, the Solovay-Strassen test is both computationally and con-
ceptually more complex.

4.33 Note (Miller-Rabin is better than Solovay-Strassen) In summary, both the Miller-Rabin
and Solovay-Strassen tests are correct in the event that either their input is actually prime,
or that they declare their input composite. There is, however, no reason to use the Solovay-
Strassen test (nor the Fermat test) over the Miller-Rabin test. The reasons for this are sum-
marized below.

(i) The Solovay-Strassen test is computationally more expensive.
(ii) The Solovay-Strassen test is harder to implement since it also involves Jacobi symbol

computations.
(iii) The error probability for Solovay-Strassen is bounded above by (12)

t, while the error
probability for Miller-Rabin is bounded above by (14)

t.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

142 Ch. 4 Public-Key Parameters

(iv) Any strong liar for n is also an Euler liar for n. Hence, from a correctness point of
view, the Miller-Rabin test is never worse than the Solovay-Strassen test.

4.3 (True) Primality tests

The primality tests in this section are methods by which positive integers can be proven
to be prime, and are often referred to as primality proving algorithms. These primality
tests are generally more computationally intensive than the probabilistic primality tests of
§4.2. Consequently, before applying one of these tests to a candidate prime n, the candidate
should be subjected to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).

4.34 Definition An integer nwhich is determined to be prime on the basis of a primality prov-
ing algorithm is called a provable prime.

4.3.1 Testing Mersenne numbers

Efficient algorithms are known for testing primality of some special classes of numbers,
such as Mersenne numbers and Fermat numbers. Mersenne primes n are useful because
the arithmetic in the field Zn for such n can be implemented very efficiently (see §14.3.4).
The Lucas-Lehmer test for Mersenne numbers (Algorithm 4.37) is such an algorithm.

4.35 Definition Let s ≥ 2 be an integer. A Mersenne number is an integer of the form 2s− 1.
If 2s − 1 is prime, then it is called a Mersenne prime.

The following are necessary and sufficient conditions for a Mersenne number to be prime.

4.36 Fact Let s ≥ 3. The Mersenne number n = 2s − 1 is prime if and only if the following
two conditions are satisfied:

(i) s is prime; and
(ii) the sequence of integers defined by u0 = 4 and uk+1 = (u2k − 2) mod n for k ≥ 0

satisfies us−2 = 0.

Fact 4.36 leads to the following deterministic polynomial-time algorithm for determin-
ing (with certainty) whether a Mersenne number is prime.

4.37 Algorithm Lucas-Lehmer primality test for Mersenne numbers

INPUT: a Mersenne number n = 2s − 1 with s ≥ 3.
OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”

1. Use trial division to check if s has any factors between 2 and b
√
sc. If it does, then

return(“composite”).
2. Set u←4.
3. For k from 1 to s− 2 do the following: compute u←(u2 − 2) mod n.
4. If u = 0 then return(“prime”). Otherwise, return(“composite”).

It is unknown whether there are infinitely many Mersenne primes. Table 4.2 lists the
33 known Mersenne primes.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.3 (True) Primality tests 143

Index Mj decimal
j digits

1 2 1
2 3 1
3 5 2
4 7 3
5 13 4
6 17 6
7 19 6
8 31 10
9 61 19
10 89 27
11 107 33
12 127 39
13 521 157
14 607 183
15 1279 386
16 2203 664
17 2281 687

Index Mj decimal
j digits

18 3217 969
19 4253 1281
20 4423 1332
21 9689 2917
22 9941 2993
23 11213 3376
24 19937 6002
25 21701 6533
26 23209 6987
27 44497 13395
28 86243 25962
29 110503 33265
30 132049 39751
31 216091 65050
32? 756839 227832
33? 859433 258716

Table 4.2: Known Mersenne primes. The table shows the 33 known exponents Mj , 1 ≤ j ≤ 33, for
which 2Mj −1 is a Mersenne prime, and also the number of decimal digits in 2Mj −1. The question
marks after j = 32 and j = 33 indicate that it is not known whether there are any other exponents s
between M31 and these numbers for which 2s − 1 is prime.

4.3.2 Primality testing using the factorization of n− 1

This section presents results which can be used to prove that an integer n is prime, provided
that the factorization or a partial factorization ofn−1 is known. It may seem odd to consider
a technique which requires the factorization of n− 1 as a subproblem — if integers of this
size can be factored, the primality of n itself could be determined by factoring n. However,
the factorization of n−1may be easier to compute if n has a special form, such as a Fermat
number n = 22

k

+ 1. Another situation where the factorization of n − 1 may be easy to
compute is when the candidate n is “constructed” by specific methods (see §4.4.4).

4.38 Fact Let n ≥ 3 be an integer. Then n is prime if and only if there exists an integer a
satisfying:

(i) an−1 ≡ 1 (mod n); and
(ii) a(n−1)/q 6≡ 1 (mod n) for each prime divisor q of n− 1.

This result follows from the fact that Z∗n has an element of order n − 1 (Definition 2.128)
if and only if n is prime; an element a satisfying conditions (i) and (ii) has order n− 1.

4.39 Note (primality test based on Fact 4.38) If n is a prime, the number of elements of order
n− 1 is precisely φ(n− 1). Hence, to prove a candidate n prime, one may simply choose
an integer a ∈ Zn at random and uses Fact 4.38 to check if a has order n − 1. If this is
the case, then n is certainly prime. Otherwise, another a ∈ Zn is selected and the test is
repeated. If n is indeed prime, the expected number of iterations before an element a of
order n − 1 is selected is O(ln lnn); this follows since (n − 1)/φ(n − 1) < 6 ln lnn for

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

144 Ch. 4 Public-Key Parameters

n ≥ 5 (Fact 2.102). Thus, if such an a is not found after a “reasonable” number (for ex-
ample, 12 ln lnn) of iterations, then n is probably composite and should again be subjected
to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).3 This method is, in
effect, a probabilistic compositeness test.

The next result gives a method for proving primality which requires knowledge of only
a partial factorization of n− 1.

4.40 Fact (Pocklington’s theorem) Let n ≥ 3 be an integer, and let n = RF +1 (i.e. F divides
n − 1) where the prime factorization of F is F =

∏t
j=1 q

ej
j . If there exists an integer a

satisfying:

(i) an−1 ≡ 1 (mod n); and
(ii) gcd(a(n−1)/qj − 1, n) = 1 for each j, 1 ≤ j ≤ t,

then every prime divisor p of n is congruent to 1 modulo F . It follows that if F >
√
n−1,

then n is prime.

If n is indeed prime, then the following result establishes that most integers a satisfy
conditions (i) and (ii) of Fact 4.40, provided that the prime divisors of F >

√
n − 1 are

sufficiently large.

4.41 Fact Let n = RF + 1 be an odd prime with F >
√
n − 1 and gcd(R,F) = 1. Let the

distinct prime factors of F be q1, q2, . . . , qt. Then the probability that a randomly selected
base a, 1 ≤ a ≤ n − 1, satisfies both: (i) an−1 ≡ 1 (mod n); and (ii) gcd(a(n−1)/qj −
1, n) = 1 for each j, 1 ≤ j ≤ t, is

∏t
j=1(1− 1/qj) ≥ 1−

∑t
j=1 1/qj .

Thus, if the factorization of a divisor F >
√
n− 1 of n− 1 is known then to test n for

primality, one may simply choose random integers a in the interval [2, n − 2] until one is
found satisfying conditions (i) and (ii) of Fact 4.40, implying that n is prime. If such an a
is not found after a “reasonable” number of iterations,4 then n is probably composite and
this could be established by subjecting it to a probabilistic primality test (footnote 3 also
applies here). This method is, in effect, a probabilistic compositeness test.

The next result gives a method for proving primality which only requires the factoriza-
tion of a divisor F of n−1 that is greater than 3

√
n. For an example of the use of Fact 4.42,

see Note 4.63.

4.42 Fact Let n ≥ 3 be an odd integer. Let n = 2RF + 1, and suppose that there exists an
integer a satisfying both: (i) an−1 ≡ 1 (mod n); and (ii) gcd(a(n−1)/q − 1, n) = 1 for
each prime divisor q of F . Let x ≥ 0 and y be defined by 2R = xF + y and 0 ≤ y < F .
If F ≥ 3

√
n and if y2 − 4x is neither 0 nor a perfect square, then n is prime.

4.3.3 Jacobi sum test

The Jacobi sum test is another true primality test. The basic idea is to test a set of con-
gruences which are analogues of Fermat’s theorem (Fact 2.127(i)) in certain cyclotomic
rings. The running time of the Jacobi sum test for determining the primality of an integer
n is O((lnn)c ln ln lnn) bit operations for some constant c. This is “almost” a polynomial-
time algorithm since the exponent ln ln lnn acts like a constant for the range of values for

3 Another approach is to run both algorithms in parallel (with an unlimited number of iterations), until one of
them stops with a definite conclusion “prime” or “composite”.
4The number of iterations may be taken to be T where PT ≤ (1

2
)100 , and where P = 1−

∏t
j=1(1−1/qj).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 145

n of interest. For example, if n ≤ 2512, then ln ln lnn < 1.78. The version of the Ja-
cobi sum primality test used in practice is a randomized algorithm which terminates within
O(k(lnn)c ln ln lnn) steps with probability at least 1 − (12)

k for every k ≥ 1, and always
gives a correct answer. One drawback of the algorithm is that it does not produce a “certifi-
cate” which would enable the answer to be verified in much shorter time than running the
algorithm itself.

The Jacobi sum test is, indeed, practical in the sense that the primality of numbers that
are several hundred decimal digits long can be handled in just a few minutes on a com-
puter. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 4.24), and the resulting code is not as compact. The details of the algorithm are
complicated and are not given here; pointers to the literature are given in the chapter notes
on page 166.

4.3.4 Tests using elliptic curves

Elliptic curve primality proving algorithms are based on an elliptic curve analogue of Pock-
lington’s theorem (Fact 4.40). The version of the algorithm used in practice is usually re-
ferred to as Atkin’s test or the Elliptic Curve Primality Proving algorithm (ECPP). Under
heuristic arguments, the expected running time of this algorithm for proving the primality
of an integer n has been shown to be O((ln n)6+ε) bit operations for any ε > 0. Atkin’s
test has the advantage over the Jacobi sum test (§4.3.3) that it produces a short certificate of
primality which can be used to efficiently verify the primality of the number. Atkin’s test
has been used to prove the primality of numbers more than 1000 decimal digits long.

The details of the algorithm are complicated and are not presented here; pointers to the
literature are given in the chapter notes on page 166.

4.4 Prime number generation

This section considers algorithms for the generation of prime numbers for cryptographic
purposes. Four algorithms are presented: Algorithm 4.44 for generating probable primes
(see Definition 4.5), Algorithm 4.53 for generating strong primes (see Definition 4.52), Al-
gorithm 4.56 for generating probable primes p and q suitable for use in the Digital Signature
Algorithm (DSA), and Algorithm 4.62 for generating provable primes (see Definition 4.34).

4.43 Note (prime generation vs. primality testing) Prime number generation differs from pri-
mality testing as described in §4.2 and §4.3, but may and typically does involve the latter.
The former allows the construction of candidates of a fixed form which may lead to more
efficient testing than possible for random candidates.

4.4.1 Random search for probable primes

By the prime number theorem (Fact 2.95), the proportion of (positive) integers ≤ x that
are prime is approximately 1/ lnx. Since half of all integers ≤ x are even, the proportion
of odd integers ≤ x that are prime is approximately 2/ lnx. For instance, the proportion
of all odd integers ≤ 2512 that are prime is approximately 2/(512 · ln(2)) ≈ 1/177. This
suggests that a reasonable strategy for selecting a random k-bit (probable) prime is to re-
peatedly pick random k-bit odd integers n until one is found that is declared to be “prime”

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

146 Ch. 4 Public-Key Parameters

by MILLER-RABIN(n,t) (Algorithm 4.24) for an appropriate value of the security param-
eter t (discussed below).

If a random k-bit odd integer n is divisible by a small prime, it is less computationally
expensive to rule out the candidate n by trial division than by using the Miller-Rabin test.
Since the probability that a random integer n has a small prime divisor is relatively large,
before applying the Miller-Rabin test, the candidate n should be tested for small divisors
below a pre-determined boundB. This can be done by dividing n by all the primes below
B, or by computing greatest common divisors of n and (pre-computed) products of several
of the primes ≤ B. The proportion of candidate odd integers n not ruled out by this trial
division is

∏
3≤p≤B(1−

1
p)which, by Mertens’s theorem, is approximately1.12/ lnB (here

p ranges over prime values). For example, if B = 256, then only 20% of candidate odd
integersn pass the trial division stage, i.e., 80% are discarded before the more costly Miller-
Rabin test is performed.

4.44 Algorithm Random search for a prime using the Miller-Rabin test

RANDOM-SEARCH(k,t)
INPUT: an integer k, and a security parameter t (cf. Note 4.49).
OUTPUT: a random k-bit probable prime.

1. Generate an odd k-bit integer n at random.
2. Use trial division to determine whether n is divisible by any odd prime ≤ B (see

Note 4.45 for guidance on selecting B). If it is then go to step 1.
3. If MILLER-RABIN(n,t) (Algorithm 4.24) outputs “prime” then return(n).

Otherwise, go to step 1.

4.45 Note (optimal trial division bound B) Let E denote the time for a full k-bit modular ex-
ponentiation, and let D denote the time required for ruling out one small prime as divisor
of a k-bit integer. (The values E and D depend on the particular implementation of long-
integer arithmetic.) Then the trial division bound B that minimizes the expected running
time of Algorithm 4.44 for generating a k-bit prime is roughlyB = E/D. A more accurate
estimate of the optimum choice for B can be obtained experimentally. The odd primes up
to B can be precomputed and stored in a table. If memory is scarce, a value of B that is
smaller than the optimum value may be used.

Since the Miller-Rabin test does not provide a mathematical proof that a number is in-
deed prime, the number n returned by Algorithm 4.44 is a probable prime (Definition 4.5).
It is important, therefore, to have an estimate of the probability that n is in fact composite.

4.46 Definition The probability that RANDOM-SEARCH(k,t) (Algorithm 4.44) returns a
composite number is denoted by pk,t.

4.47 Note (remarks on estimating pk,t) It is tempting to conclude directly from Fact 4.25 that
pk,t ≤ (

1
4)
t. This reasoning is flawed (although typically the conclusion will be correct in

practice) since it does not take into account the distribution of the primes. (For example, if
all candidates n were chosen from a set S of composite numbers, the probability of error is
1.) The following discussion elaborates on this point. Let X represent the event that n is
composite, and let Yt denote the event than MILLER-RABIN(n,t) declares n to be prime.
Then Fact 4.25 states that P (Yt|X) ≤ (14)

t. What is relevant, however, to the estimation of
pk,t is the quantityP (X|Yt). Suppose that candidatesn are drawn uniformly and randomly

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 147

from a set S of odd numbers, and suppose p is the probability that n is prime (this depends
on the candidate set S). Assume also that 0 < p < 1. Then by Bayes’ theorem (Fact 2.10):

P (X|Yt) =
P (X)P (Yt|X)

P (Yt)
≤

P (Yt|X)

P (Yt)
≤
1

p

(
1

4

)t
,

sinceP (Yt) ≥ p. Thus the probabilityP (X|Yt)may be considerably larger than (14)
t if p is

small. However, the error-probability of Miller-Rabin is usually far smaller than (14)
t (see

Remark 4.26). Using better estimates for P (Yt|X) and estimates on the number of k-bit
prime numbers, it has been shown that pk,t is, in fact, smaller than (14)

t for all sufficiently
large k. A more concrete result is the following: if candidates n are chosen at random from
the set of odd numbers in the interval [3, x], then P (X|Yt) ≤ (14)

t for all x ≥ 1060.

Further refinements for P (Yt|X) allow the following explicit upper bounds on pk,t for
various values of k and t. 5

4.48 Fact (some upper bounds on pk,t in Algorithm 4.44)

(i) pk,1 < k242−
√
k for k ≥ 2.

(ii) pk,t < k3/22tt−1/242−
√
tk for (t = 2, k ≥ 88) or (3 ≤ t ≤ k/9, k ≥ 21).

(iii) pk,t < 7
20k2

−5t + 17k
15/42−k/2−2t + 12k2−k/4−3t for k/9 ≤ t ≤ k/4, k ≥ 21.

(iv) pk,t < 1
7k
15/42−k/2−2t for t ≥ k/4, k ≥ 21.

For example, if k = 512 and t = 6, then Fact 4.48(ii) gives p512,6 ≤ (12)
88. In other

words, the probability that RANDOM-SEARCH(512,6) returns a 512-bit composite integer
is less than (12)

88. Using more advanced techniques, the upper bounds on pk,t given by
Fact 4.48 have been improved. These upper bounds arise from complicated formulae which
are not given here. Table 4.3 lists some improved upper bounds on pk,t for some sample
values of k and t. As an example, the probability that RANDOM-SEARCH(500,6) returns
a composite number is ≤ (12)

92. Notice that the values of pk,t implied by the table are
considerably smaller than (14)

t = (12)
2t.

t

k 1 2 3 4 5 6 7 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 11 25 34 41 47 52 57 61 65 69
250 14 29 39 47 54 60 65 70 75 79
300 19 33 44 53 60 67 73 78 83 88
350 28 38 48 58 66 73 80 86 91 97
400 37 46 55 63 72 80 87 93 99 105
450 46 54 62 70 78 85 93 100 106 112
500 56 63 70 78 85 92 99 106 113 119
550 65 72 79 86 93 100 107 113 119 126
600 75 82 88 95 102 108 115 121 127 133

Table 4.3: Upper bounds on pk,t for sample values of k and t. An entry j corresponding to k and t
implies pk,t ≤ (12)

j .

5The estimates of pk,t presented in the remainder of this subsection were derived for the situation where Al-
gorithm 4.44 does not use trial division by small primes to rule out some candidates n. Since trial division never
rules out a prime, it can only give a better chance of rejecting composites. Thus the error probability pk,t might
actually be even smaller than the estimates given here.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

148 Ch. 4 Public-Key Parameters

4.49 Note (controlling the error probability) In practice, one is usually willing to tolerate an er-
ror probability of (12)

80 when using Algorithm 4.44 to generate probable primes. For sam-
ple values of k, Table 4.4 lists the smallest value of t that can be derived from Fact 4.48
for which pk,t ≤ (12)

80. For example, when generating 1000-bit probable primes, Miller-
Rabin with t = 3 repetitions suffices. Algorithm 4.44 rules out most candidates n either
by trial division (in step 2) or by performing just one iteration of the Miller-Rabin test (in
step 3). For this reason, the only effect of selecting a larger security parameter t on the run-
ning time of the algorithm will likely be to increase the time required in the final stage when
the (probable) prime is chosen.

k t

100 27
150 18
200 15
250 12
300 9
350 8
400 7
450 6

k t

500 6
550 5
600 5
650 4
700 4
750 4
800 4
850 3

k t

900 3
950 3
1000 3
1050 3
1100 3
1150 3
1200 3
1250 3

k t

1300 2
1350 2
1400 2
1450 2
1500 2
1550 2
1600 2
1650 2

k t

1700 2
1750 2
1800 2
1850 2
1900 2
1950 2
2000 2
2050 2

Table 4.4: For sample k, the smallest t from Fact 4.48 is given for which pk,t ≤ (12)
80.

4.50 Remark (Miller-Rabin test with base a = 2) The Miller-Rabin test involves exponenti-
ating the base a; this may be performed using the repeated square-and-multiply algorithm
(Algorithm 2.143). If a = 2, then multiplication by a is a simple procedure relative to mul-
tiplying by a in general. One optimization of Algorithm 4.44 is, therefore, to fix the base
a = 2when first performing the Miller-Rabin test in step 3. Since most composite numbers
will fail the Miller-Rabin test with base a = 2, this modification will lower the expected
running time of Algorithm 4.44.

4.51 Note (incremental search)

(i) An alternative technique to generating candidates n at random in step 1 of Algo-
rithm 4.44 is to first select a random k-bit odd numbern0, and then test the s numbers
n = n0, n0+2, n0+4, . . . , n0+2(s−1) for primality. If all these s candidates are
found to be composite, the algorithm is said to have failed. If s = c·ln 2k where c is a
constant, the probability qk,t,s that this incremental search variant of Algorithm 4.44

returns a composite number has been shown to be less than δk32−
√
k for some con-

stant δ. Table 4.5 gives some explicit bounds on this error probability for k = 500 and
t ≤ 10. Under reasonable number-theoretic assumptions, the probability of the algo-
rithm failing has been shown to be less than 2e−2c for large k (here, e ≈ 2.71828).

(ii) Incremental search has the advantage that fewer random bits are required. Further-
more, the trial division by small primes in step 2 of Algorithm 4.44 can be accom-
plished very efficiently as follows. First the values R[p] = n0 mod p are computed
for each odd prime p ≤ B. Each time 2 is added to the current candidate, the values
in the tableR are updated asR[p]←(R[p]+2) mod p. The candidate passes the trial
division stage if and only if none of the R[p] values equal 0.

(iii) If B is large, an alternative method for doing the trial division is to initialize a table
S[i]←0 for 0 ≤ i ≤ (s − 1); the entry S[i] corresponds to the candidate n0 + 2i.
For each odd prime p ≤ B, n0 mod p is computed. Let j be the smallest index for

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 149

t

c 1 2 3 4 5 6 7 8 9 10

1 17 37 51 63 72 81 89 96 103 110
5 13 32 46 58 68 77 85 92 99 105
10 11 30 44 56 66 75 83 90 97 103

Table 4.5: Upper bounds on the error probability of incremental search (Note 4.51) for k = 500
and sample values of c and t. An entry j corresponding to c and t implies q500,t,s ≤ (12)

j , where
s = c · ln 2500.

which (n0 + 2j) ≡ 0 (mod p). Then S[j] and each pth entry after it are set to 1. A
candidate n0 + 2i then passes the trial division stage if and only if S[i] = 0. Note
that the estimate for the optimal trial division bound B given in Note 4.45 does not
apply here (nor in (ii)) since the cost of division is amortized over all candidates.

4.4.2 Strong primes

The RSA cryptosystem (§8.2) uses a modulus of the form n = pq, where p and q are dis-
tinct odd primes. The primes p and q must be of sufficient size that factorization of their
product is beyond computational reach. Moreover, they should be random primes in the
sense that they be chosen as a function of a random input through a process defining a pool
of candidates of sufficient cardinality that an exhaustive attack is infeasible. In practice, the
resulting primes must also be of a pre-determined bitlength, to meet system specifications.
The discovery of the RSA cryptosystem led to the consideration of several additional con-
straints on the choice of p and qwhich are necessary to ensure the resulting RSA system safe
from cryptanalytic attack, and the notion of a strong prime (Definition 4.52) was defined.
These attacks are described at length in Note 8.8(iii); as noted there, it is now believed that
strong primes offer little protection beyond that offered by random primes, since randomly
selected primes of the sizes typically used in RSA moduli today will satisfy the constraints
with high probability. On the other hand, they are no less secure, and require only minimal
additional running time to compute; thus, there is little real additional cost in using them.

4.52 Definition A prime number p is said to be a strong prime if integers r, s, and t exist such
that the following three conditions are satisfied:

(i) p− 1 has a large prime factor, denoted r;
(ii) p+ 1 has a large prime factor, denoted s; and

(iii) r − 1 has a large prime factor, denoted t.

In Definition 4.52, a precise qualification of “large” depends on specific attacks that should
be guarded against; for further details, see Note 8.8(iii).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

150 Ch. 4 Public-Key Parameters

4.53 Algorithm Gordon’s algorithm for generating a strong prime

SUMMARY: a strong prime p is generated.

1. Generate two large random primes s and t of roughly equal bitlength (see Note 4.54).
2. Select an integer i0. Find the first prime in the sequence 2it + 1, for i = i0, i0 +
1, i0 + 2, . . . (see Note 4.54). Denote this prime by r = 2it+ 1.

3. Compute p0 = 2(sr−2 mod r)s− 1.
4. Select an integer j0. Find the first prime in the sequence p0 +2jrs, for j = j0, j0 +
1, j0 + 2, . . . (see Note 4.54). Denote this prime by p = p0 + 2jrs.

5. Return(p).

Justification. To see that the prime p returned by Gordon’s algorithm is indeed a strong
prime, observe first (assuming r 6= s) that sr−1 ≡ 1 (mod r); this follows from Fermat’s
theorem (Fact 2.127). Hence, p0 ≡ 1 (mod r) and p0 ≡ −1 (mod s). Finally (cf. Defi-
nition 4.52),

(i) p− 1 = p0 + 2jrs− 1 ≡ 0 (mod r), and hence p− 1 has the prime factor r;
(ii) p+ 1 = p0 + 2jrs+ 1 ≡ 0 (mod s), and hence p+ 1 has the prime factor s; and

(iii) r − 1 = 2it ≡ 0 (mod t), and hence r − 1 has the prime factor t.

4.54 Note (implementing Gordon’s algorithm)

(i) The primes s and t required in step 1 can be probable primes generated by Algo-
rithm 4.44. The Miller-Rabin test (Algorithm 4.24) can be used to test each candidate
for primality in steps 2 and 4, after ruling out candidates that are divisible by a small
prime less than some boundB. See Note 4.45 for guidance on selectingB. Since the
Miller-Rabin test is a probabilistic primality test, the output of this implementation
of Gordon’s algorithm is a probable prime.

(ii) By carefully choosing the sizes of primes s, t and parameters i0, j0, one can control
the exact bitlength of the resulting prime p. Note that the bitlengths of r and s will
be about half that of p, while the bitlength of t will be slightly less than that of r.

4.55 Fact (running time of Gordon’s algorithm) If the Miller-Rabin test is the primality test used
in steps 1, 2, and 4, the expected time Gordon’s algorithm takes to find a strong prime is only
about 19% more than the expected time Algorithm 4.44 takes to find a random prime.

4.4.3 NIST method for generating DSA primes

Some public-key schemes require primes satisfying various specific conditions. For exam-
ple, the NIST Digital Signature Algorithm (DSA of §11.5.1) requires two primes p and q
satisfying the following three conditions:

(i) 2159 < q < 2160; that is, q is a 160-bit prime;
(ii) 2L−1 < p < 2L for a specified L, where L = 512 + 64l for some 0 ≤ l ≤ 8; and

(iii) q divides p− 1.

This section presents an algorithm for generating such primes p and q. In the following,
H denotes the SHA-1 hash function (Algorithm 9.53) which maps bitstrings of bitlength
< 264 to 160-bit hash-codes. Where required, an integer x in the range 0 ≤ x < 2g whose
binary representation is x = xg−12

g−1 + xg−22
g−2 + · · · + x222 + x12 + x0 should be

converted to the g-bit sequence (xg−1xg−2 · · ·x2x1x0), and vice versa.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 151

4.56 Algorithm NIST method for generating DSA primes

INPUT: an integer l, 0 ≤ l ≤ 8.
OUTPUT: a 160-bit prime q and an L-bit prime p, where L = 512 + 64l and q|(p− 1).

1. Compute L = 512+ 64l. Using long division of (L− 1) by 160, find n, b such that
L− 1 = 160n+ b, where 0 ≤ b < 160.

2. Repeat the following:

2.1 Choose a random seed s (not necessarily secret) of bitlength g ≥ 160.
2.2 Compute U = H(s)⊕H((s+ 1) mod 2g).
2.3 Form q from U by setting to 1 the most significant and least significant bits of

U . (Note that q is a 160-bit odd integer.)
2.4 Test q for primality using MILLER-RABIN(q,t) for t ≥ 18 (see Note 4.57).

Until q is found to be a (probable) prime.
3. Set i←0, j←2.
4. While i < 4096 do the following:

4.1 For k from 0 to n do the following: set Vk←H((s+ j + k) mod 2g).
4.2 For the integer W defined below, let X =W + 2L−1. (X is an L-bit integer.)

W = V0 + V12
160 + V22

320 + · · ·+ Vn−12
160(n−1) + (Vn mod 2

b)2160n.

4.3 Compute c = X mod 2q and set p = X−(c−1). (Note that p ≡ 1 (mod 2q).)
4.4 If p ≥ 2L−1 then do the following:

Test p for primality using MILLER-RABIN(p,t) for t ≥ 5 (see Note 4.57).
If p is a (probable) prime then return(q,p).

4.5 Set i←i+ 1, j←j + n+ 1.

5. Go to step 2.

4.57 Note (choice of primality test in Algorithm 4.56)

(i) The FIPS 186 document where Algorithm 4.56 was originally described only speci-
fies that a robust primality test be used in steps 2.4 and 4.4, i.e., a primality test where
the probability of a composite integer being declared prime is at most (12)

80. If the
heuristic assumption is made that q is a randomly chosen 160-bit integer then, by Ta-
ble 4.4, MILLER-RABIN(q,18) is a robust test for the primality of q. If p is assumed
to be a randomly chosen L-bit integer, then by Table 4.4, MILLER-RABIN(p,5) is
a robust test for the primality of p. Since the Miller-Rabin test is a probabilistic pri-
mality test, the output of Algorithm 4.56 is a probable prime.

(ii) To improve performance, candidate primes q and p should be subjected to trial divi-
sion by all odd primes less than some boundB before invoking the Miller-Rabin test.
See Note 4.45 for guidance on selecting B.

4.58 Note (“weak” primes cannot be intentionally constructed) Algorithm 4.56 has the feature
that the random seed s is not input to the prime number generation portion of the algorithm
itself, but rather to an unpredictable and uncontrollable randomization process (steps 2.2
and 4.1), the output of which is used as the actual random seed. This precludes manipulation
of the input seed to the prime number generation. If the seed s and counter i are made public,
then anyone can verify that q and pwere generated using the approved method. This feature
prevents a central authority who generates p and q as system-wide parameters for use in the
DSA from intentionally constructing “weak” primes q and p which it could subsequently
exploit to recover other entities’ private keys.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

152 Ch. 4 Public-Key Parameters

4.4.4 Constructive techniques for provable primes

Maurer’s algorithm (Algorithm 4.62) generates random provable primes that are almost
uniformly distributed over the set of all primes of a specified size. The expected time for
generating a prime is only slightly greater than that for generating a probable prime of equal
size using Algorithm 4.44 with security parameter t = 1. (In practice, one may wish to
choose t > 1 in Algorithm 4.44; cf. Note 4.49.)

The main idea behind Algorithm 4.62 is Fact 4.59, which is a slight modification of
Pocklington’s theorem (Fact 4.40) and Fact 4.41.

4.59 Fact Let n ≥ 3 be an odd integer, and suppose that n = 1+2Rq where q is an odd prime.
Suppose further that q > R.

(i) If there exists an integer a satisfying an−1 ≡ 1 (mod n) and gcd(a2R − 1, n) = 1,
then n is prime.

(ii) If n is prime, the probability that a randomly selected base a, 1 ≤ a ≤ n−1, satisfies
an−1 ≡ 1 (mod n) and gcd(a2R − 1, n) = 1 is (1− 1/q).

Algorithm 4.62 recursively generates an odd prime q, and then chooses random integersR,
R < q, until n = 2Rq + 1 can be proven prime using Fact 4.59(i) for some base a. By
Fact 4.59(ii) the proportion of such bases is 1− 1/q for prime n. On the other hand, if n is
composite, then most bases a will fail to satisfy the condition an−1 ≡ 1 (mod n).

4.60 Note (description of constants c and m in Algorithm 4.62)

(i) The optimal value of the constant c defining the trial division bound B = ck2 in
step 2 depends on the implementation of long-integer arithmetic, and is best deter-
mined experimentally (cf. Note 4.45).

(ii) The constant m = 20 ensures that I is at least 20 bits long and hence the interval
from which R is selected, namely [I + 1, 2I], is sufficiently large (for the values of
k of practical interest) that it most likely contains at least one valueR for which n =
2Rq + 1 is prime.

4.61 Note (relative size r of q with respect to n in Algorithm 4.62) The relative size r of q with
respect to n is defined to be r = lg q/ lgn. In order to assure that the generated prime n is
chosen randomly with essentially uniform distribution from the set of all k-bit primes, the
size of the prime factor q of n− 1must be chosen according to the probability distribution
of the largest prime factor of a randomly selected k-bit integer. Since q must be greater than
R in order for Fact 4.59 to apply, the relative size r of q is restricted to being in the interval
[12 , 1]. It can be deduced from Fact 3.7(i) that the cumulative probability distribution of the
relative size r of the largest prime factor of a large random integer, given that r is at least
1
2 , is (1 + lg r) for 12 ≤ r ≤ 1. In step 4 of Algorithm 4.62, the relative size r is generated
according to this distribution by selecting a random number s ∈ [0, 1] and then setting r =
2s−1. If k ≤ 2m then r is chosen to be the smallest permissible value, namely 12 , in order
to ensure that the interval from which R is selected is sufficiently large (cf. Note 4.60(ii)).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.4 Prime number generation 153

4.62 Algorithm Maurer’s algorithm for generating provable primes

PROVABLE PRIME(k)
INPUT: a positive integer k.
OUTPUT: a k-bit prime number n.

1. (If k is small, then test random integers by trial division. A table of small primes may
be precomputed for this purpose.)
If k ≤ 20 then repeatedly do the following:

1.1 Select a random k-bit odd integer n.
1.2 Use trial division by all primes less than

√
n to determine whether n is prime.

1.3 If n is prime then return(n).

2. Set c←0.1 and m←20 (see Note 4.60).
3. (Trial division bound) Set B←c · k2 (see Note 4.60).
4. (Generate r, the size of q relative to n — see Note 4.61) If k > 2m then repeatedly

do the following: select a random number s in the interval [0, 1], set r←2s−1, until
(k − rk) > m. Otherwise (i.e. k ≤ 2m), set r←0.5.

5. Compute q←PROVABLE PRIME(br · kc+ 1).
6. Set I←b2k−1/(2q)c.
7. success←0.
8. While (success = 0) do the following:

8.1 (select a candidate integer n) Select a random integer R in the interval [I +
1, 2I] and set n←2Rq + 1.

8.2 Use trial division to determine whethern is divisible by any prime number< B.
If it is not then do the following:

Select a random integer a in the interval [2, n− 2].
Compute b←an−1 mod n.
If b = 1 then do the following:

Compute b←a2R mod n and d← gcd(b− 1, n).
If d = 1 then success←1.

9. Return(n).

4.63 Note (improvements to Algorithm 4.62)

(i) A speedup can be achieved by using Fact 4.42 instead of Fact 4.59(i) for proving
n = 2Rq+1 prime in step 8.2 of Maurer’s algorithm — Fact 4.42 only requires that
q be greater than 3

√
n.

(ii) If a candidate n passes the trial division (in step 8.2), then a Miller-Rabin test (Algo-
rithm 4.24) with the single base a = 2 should be performed on n; only if n passes
this test should the attempt to prove its primality (the remainder of step 8.2) be under-
taken. This leads to a faster implementation due to the efficiency of the Miller-Rabin
test with a single base a = 2 (cf. Remark 4.50).

(iii) Step 4 requires the use of real number arithmetic when computing 2s−1. To avoid
these computations, one can precompute and store a list of such values for a selection
of random numbers s ∈ [0, 1].

4.64 Note (provable primes vs. probable primes) Probable primes are advantageous over prov-
able primes in that Algorithm 4.44 for generating probable primes with t = 1 is slightly
faster than Maurer’s algorithm. Moreover, the latter requires more run-time memory due

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

154 Ch. 4 Public-Key Parameters

to its recursive nature. Provable primes are preferable to probable primes in the sense that
the former have zero error probability. In any cryptographic application, however, there
is always a non-zero error probability of some catastrophic failure, such as the adversary
guessing a secret key or hardware failure. Since the error probability of probable primes
can be efficiently brought down to acceptably low levels (see Note 4.49 but note the depen-
dence on t), there appears to be no reason for mandating the use of provable primes over
probable primes.

4.5 Irreducible polynomials over Zp

Recall (Definition 2.190) that a polynomial f(x) ∈ Zp[x] of degree m ≥ 1 is said to be
irreducible over Zp if it cannot be written as a product of two polynomials in Zp[x] each
having degree less than m. Such a polynomial f(x) can be used to represent the elements
of the finite field Fpm as Fpm = Zp[x]/(f(x)), the set of all polynomials in Zp[x] of de-
gree less thanmwhere the addition and multiplication of polynomials is performed modulo
f(x) (see §2.6.3). This section presents techniques for constructing irreducible polynomials
over Zp, where p is a prime. The characteristic two finite fields F2m are of particular inter-
est for cryptographic applications because the arithmetic in these fields can be efficiently
performed both in software and in hardware. For this reason, additional attention is given
to the special case of irreducible polynomials over Z2.

The arithmetic in finite fields can usually be implemented more efficiently if the irre-
ducible polynomial chosen has few non-zero terms. Irreducible trinomials, i.e., irreducible
polynomials having exactly three non-zero terms, are considered in §4.5.2. Primitive poly-
nomials, i.e., irreducible polynomials f(x) of degreem in Zp[x] for which x is a generator
of F∗pm , the multiplicative group of the finite field Fpm = Zp[x]/(f(x)) (Definition 2.228),
are the topic of §4.5.3. Primitive polynomials are also used in the generation of linear feed-
back shift register sequences having the maximum possible period (Fact 6.12).

4.5.1 Irreducible polynomials

If f(x) ∈ Zp[x] is irreducible overZp and a is a non-zero element inZp, then a·f(x) is also
irreducible over Zp. Hence it suffices to restrict attention to monic polynomials in Zp[x],
i.e., polynomials whose leading coefficient is 1. Observe also that if f(x) is an irreducible
polynomial, then its constant term must be non-zero. In particular, if f(x) ∈ Z2[x], then
its constant term must be 1.

There is a formula for computing exactly the number of monic irreducible polynomi-
als in Zp[x] of a fixed degree. The Möbius function, which is defined next, is used in this
formula.

4.65 Definition Let m be a positive integer. The Möbius function µ is defined by

µ(m) =

1, if m = 1,
0, if m is divisible by the square of a prime,
(−1)k, if m is the product of k distinct primes.

4.66 Example (Möbius function) The following table gives the values of the Möbius function
µ(m) for the first 10 values of m:

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.5 Irreducible polynomials over Zp 155

m 1 2 3 4 5 6 7 8 9 10
µ(m) 1 −1 −1 0 −1 1 −1 0 0 1

�

4.67 Fact (number of monic irreducible polynomials) Let p be a prime andm a positive integer.

(i) The numberNp(m) of monic irreducible polynomials of degreem in Zp[x] is given
by the following formula:

Np(m) =
1

m

∑
d|m

µ(d)pm/d,

where the summation ranges over all positive divisors d of m.
(ii) The probability of a random monic polynomial of degreem inZp[x] being irreducible

over Zp is roughly 1
m . More specifically, the numberNp(m) satisfies

1

2m
≤

Np(m)

pm
≈
1

m
.

Testing irreducibility of polynomials in Zp[x] is significantly simpler than testing pri-
mality of integers. A polynomial can be tested for irreducibility by verifying that it has no
irreducible factors of degree≤ bm2 c. The following result leads to an efficient method (Al-
gorithm 4.69) for accomplishing this.

4.68 Fact Let p be a prime and let k be a positive integer.

(i) The product of all monic irreducible polynomials in Zp[x] of degree dividing k is
equal to xp

k

− x.
(ii) Let f(x) be a polynomial of degreem in Zp[x]. Then f(x) is irreducible over Zp if

and only if gcd(f(x), xp
i

− x) = 1 for each i, 1 ≤ i ≤ bm2 c.

4.69 Algorithm Testing a polynomial for irreducibility

INPUT: a prime p and a monic polynomial f(x) of degree m in Zp[x].
OUTPUT: an answer to the question: “Is f(x) irreducible over Zp?”

1. Set u(x)←x.
2. For i from 1 to bm2 c do the following:

2.1 Compute u(x)←u(x)p mod f(x) using Algorithm 2.227. (Note that u(x) is a
polynomial in Zp[x] of degree less than m.)

2.2 Compute d(x) = gcd(f(x), u(x)− x) (using Algorithm 2.218).
2.3 If d(x) 6= 1 then return(“reducible”).

3. Return(“irreducible”).

Fact 4.67 suggests that one method for finding an irreducible polynomial of degreem
in Zp[x] is to generate a random monic polynomial of degree m in Zp[x], test it for irre-
ducibility, and continue until an irreducible one is found (Algorithm 4.70). The expected
number of polynomials to be tried before an irreducible one is found is approximatelym.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

156 Ch. 4 Public-Key Parameters

4.70 Algorithm Generating a random monic irreducible polynomial over Zp

INPUT: a prime p and a positive integer m.
OUTPUT: a monic irreducible polynomial f(x) of degree m in Zp[x].

1. Repeat the following:

1.1 (Generate a random monic polynomial of degree m in Zp[x])
Randomly select integers a0, a1, a2, . . . , am−1 between 0 and p−1 with a0 6=
0. Let f(x) be the polynomialf(x) = xm+am−1xm−1+· · ·+a2x2+a1x+a0.

1.2 Use Algorithm 4.69 to test whether f(x) is irreducible over Zp.

Until f(x) is irreducible.
2. Return(f(x)).

It is known that the expected degree of the irreducible factor of least degree of a random
polynomial of degreem in Zp[x] is O(lgm). Hence for each choice of f(x), the expected
number of times steps 2.1 – 2.3 of Algorithm 4.69 are iterated is O(lgm). Each iteration
takes O((lg p)m2) Zp-operations. These observations, together with Fact 4.67(ii), deter-
mine the running time for Algorithm 4.70.

4.71 Fact Algorithm 4.70 has an expected running time of O(m3(lgm)(lg p)) Zp-operations.

Given one irreducible polynomial of degreem over Zp, Note 4.74 describes a method,
which is more efficient than Algorithm 4.70, for randomly generating additional such poly-
nomials.

4.72 Definition Let Fq be a finite field of characteristic p, and let α ∈ Fq . A minimum polyno-
mial of α over Zp is a monic polynomial of least degree in Zp[x] having α as a root.

4.73 Fact Let Fq be a finite field of order q = pm, and let α ∈ Fq .

(i) The minimum polynomial of α over Zp, denoted mα(x), is unique.
(ii) mα(x) is irreducible over Zp.

(iii) The degree of mα(x) is a divisor of m.

(iv) Let t be the smallest positive integer such that αp
t

= α. (Note that such a t exists
since, by Fact 2.213, αp

m

= α.) Then

mα(x) =
t−1∏
i=0

(x− αp
i

). (4.1)

4.74 Note (generating new irreducible polynomials from a given one) Suppose that f(y) is a
given irreducible polynomial of degreem over Zp. The finite field Fpm can then be repre-
sented as Fpm = Zp[y]/(f(y)). A random monic irreducible polynomial of degreem over
Zp can be efficiently generated as follows. First generate a random element α ∈ Fpm and
then, by repeated exponentiation by p, determine the smallest positive integer t for which
αp

t

= α. If t < m, then generate a new random elementα ∈ Fpm and repeat; the probabil-
ity that t < m is known to be at most (lgm)/qm/2. If indeed t = m, then computemα(x)
using the formula (4.1). Then mα(x) is a random monic irreducible polynomial of degree
m inZp[x]. This method has an expected running time ofO(m3(lg p))Zp-operations (com-
pare with Fact 4.71).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.5 Irreducible polynomials over Zp 157

4.5.2 Irreducible trinomials

If a polynomialf(x) inZ2[x] has an even number of non-zero terms, then f(1) = 0, whence
(x + 1) is a factor of f(x). Hence, the smallest number of non-zero terms an irreducible
polynomial of degree≥ 2 in Z2[x] can have is three. An irreducible trinomial of degreem
in Z2[x]must be of the form xm+xk+1, where 1 ≤ k ≤ m− 1. Choosing an irreducible
trinomial f(x) ∈ Z2[x] of degree m to represent the elements of the finite field F2m =
Z2[x]/(f(x)) can lead to a faster implementation of the field arithmetic. The following
facts are sometimes of use when searching for irreducible trinomials.

4.75 Fact Let m be a positive integer, and let k denote an integer in the interval [1,m− 1].

(i) If the trinomial xm + xk + 1 is irreducible over Z2 then so is xm + xm−k + 1.
(ii) If m ≡ 0 (mod 8), there is no irreducible trinomial of degree m in Z2[x].

(iii) Suppose that eitherm ≡ 3 (mod 8) orm ≡ 5 (mod 8). Then a necessary condition
for xm + xk + 1 to be irreducible over Z2 is that either k or m − k must be of the
form 2d for some positive divisor d of m.

Tables 4.6 and 4.7 list an irreducible trinomial of degreem overZ2 for eachm ≤ 1478
for which such a trinomial exists.

4.5.3 Primitive polynomials

Primitive polynomials were introduced at the beginning of §4.5. Let f(x) ∈ Zp[x] be an
irreducible polynomial of degreem. If the factorization of the integer pm−1 is known, then
Fact 4.76 yields an efficient algorithm (Algorithm 4.77) for testing whether or not f(x) is
a primitive polynomial. If the factorization of pm − 1 is unknown, there is no efficient
algorithm known for performing this test.

4.76 Fact Let p be a prime and let the distinct prime factors of pm − 1 be r1, r2, . . . , rt. Then
an irreducible polynomial f(x) ∈ Zp[x] is primitive if and only if for each i, 1 ≤ i ≤ t:

x(p
m−1)/ri 6≡ 1 (mod f(x)).

(That is, x is an element of order pm − 1 in the field Zp[x]/(f(x)).)

4.77 Algorithm Testing whether an irreducible polynomial is primitive

INPUT: a prime p, a positive integerm, the distinct prime factors r1, r2, . . . , rt of pm− 1,
and a monic irreducible polynomial f(x) of degree m in Zp[x].
OUTPUT: an answer to the question: “Is f(x) a primitive polynomial?”

1. For i from 1 to t do the following:

1.1 Compute l(x) = x(p
m−1)/ri mod f(x) (using Algorithm 2.227).

1.2 If l(x) = 1 then return(“not primitive”).

2. Return(“primitive”).

There are precisely φ(pm − 1)/m monic primitive polynomials of degree m in Zp[x]
(Fact 2.230), where φ is the Euler phi function (Definition 2.100). Since the number of
monic irreducible polynomials of degreem inZp[x] is roughly pm/m (Fact 4.67(ii)), it fol-
lows that the probability of a random monic irreducible polynomial of degree m in Zp[x]

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

158 Ch. 4 Public-Key Parameters

m k m k m k m k m k m k m k

2 1 93 2 193 15 295 48 402 171 508 9 618 295
3 1 94 21 194 87 297 5 404 65 510 69 620 9
4 1 95 11 196 3 300 5 406 141 511 10 622 297
5 2 97 6 198 9 302 41 407 71 513 26 623 68
6 1 98 11 199 34 303 1 409 87 514 67 625 133
7 1 100 15 201 14 305 102 412 147 516 21 626 251
9 1 102 29 202 55 308 15 414 13 518 33 628 223

10 3 103 9 204 27 310 93 415 102 519 79 631 307
11 2 105 4 207 43 313 79 417 107 521 32 633 101
12 3 106 15 209 6 314 15 418 199 522 39 634 39
14 5 108 17 210 7 316 63 420 7 524 167 636 217
15 1 110 33 212 105 318 45 422 149 526 97 639 16
17 3 111 10 214 73 319 36 423 25 527 47 641 11
18 3 113 9 215 23 321 31 425 12 529 42 642 119
20 3 118 33 217 45 322 67 426 63 532 1 646 249
21 2 119 8 218 11 324 51 428 105 534 161 647 5
22 1 121 18 220 7 327 34 431 120 537 94 649 37
23 5 123 2 223 33 329 50 433 33 538 195 650 3
25 3 124 19 225 32 330 99 436 165 540 9 651 14
28 1 126 21 228 113 332 89 438 65 543 16 652 93
29 2 127 1 231 26 333 2 439 49 545 122 654 33
30 1 129 5 233 74 337 55 441 7 550 193 655 88
31 3 130 3 234 31 340 45 444 81 551 135 657 38
33 10 132 17 236 5 342 125 446 105 553 39 658 55
34 7 134 57 238 73 343 75 447 73 556 153 660 11
35 2 135 11 239 36 345 22 449 134 558 73 662 21
36 9 137 21 241 70 346 63 450 47 559 34 663 107
39 4 140 15 242 95 348 103 455 38 561 71 665 33
41 3 142 21 244 111 350 53 457 16 564 163 668 147
42 7 145 52 247 82 351 34 458 203 566 153 670 153
44 5 146 71 249 35 353 69 460 19 567 28 671 15
46 1 147 14 250 103 354 99 462 73 569 77 673 28
47 5 148 27 252 15 358 57 463 93 570 67 676 31
49 9 150 53 253 46 359 68 465 31 574 13 679 66
52 3 151 3 255 52 362 63 468 27 575 146 682 171
54 9 153 1 257 12 364 9 470 9 577 25 684 209
55 7 154 15 258 71 366 29 471 1 580 237 686 197
57 4 155 62 260 15 367 21 473 200 582 85 687 13
58 19 156 9 263 93 369 91 474 191 583 130 689 14
60 1 159 31 265 42 370 139 476 9 585 88 690 79
62 29 161 18 266 47 372 111 478 121 588 35 692 299
63 1 162 27 268 25 375 16 479 104 590 93 694 169
65 18 166 37 270 53 377 41 481 138 593 86 695 177
66 3 167 6 271 58 378 43 484 105 594 19 697 267
68 9 169 34 273 23 380 47 486 81 596 273 698 215
71 6 170 11 274 67 382 81 487 94 599 30 700 75
73 25 172 1 276 63 383 90 489 83 601 201 702 37
74 35 174 13 278 5 385 6 490 219 602 215 705 17
76 21 175 6 279 5 386 83 492 7 604 105 708 15
79 9 177 8 281 93 388 159 494 17 606 165 711 92
81 4 178 31 282 35 390 9 495 76 607 105 713 41
84 5 180 3 284 53 391 28 497 78 609 31 714 23
86 21 182 81 286 69 393 7 498 155 610 127 716 183
87 13 183 56 287 71 394 135 500 27 612 81 718 165
89 38 185 24 289 21 396 25 503 3 614 45 719 150
90 27 186 11 292 37 399 26 505 156 615 211 721 9
92 21 191 9 294 33 401 152 506 23 617 200 722 231

Table 4.6: Irreducible trinomials xm + xk + 1 over Z2. For each m, 1 ≤ m ≤ 722, for which an
irreducible trinomial of degree m in Z2[x] exists, the table lists the smallest k for which xm+xk+1
is irreducible over Z2.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.5 Irreducible polynomials over Zp 159

m k m k m k m k m k m k m k

724 207 831 49 937 217 1050 159 1159 66 1265 119 1374 609
726 5 833 149 938 207 1052 291 1161 365 1266 7 1375 52
727 180 834 15 942 45 1054 105 1164 19 1268 345 1377 100
729 58 838 61 943 24 1055 24 1166 189 1270 333 1380 183
730 147 839 54 945 77 1057 198 1167 133 1271 17 1383 130
732 343 841 144 948 189 1058 27 1169 114 1273 168 1385 12
735 44 842 47 951 260 1060 439 1170 27 1276 217 1386 219
737 5 844 105 953 168 1062 49 1174 133 1278 189 1388 11
738 347 845 2 954 131 1063 168 1175 476 1279 216 1390 129
740 135 846 105 956 305 1065 463 1177 16 1281 229 1391 3
742 85 847 136 959 143 1071 7 1178 375 1282 231 1393 300
743 90 849 253 961 18 1078 361 1180 25 1284 223 1396 97
745 258 850 111 964 103 1079 230 1182 77 1286 153 1398 601
746 351 852 159 966 201 1081 24 1183 87 1287 470 1399 55
748 19 855 29 967 36 1082 407 1185 134 1289 99 1401 92
750 309 857 119 969 31 1084 189 1186 171 1294 201 1402 127
751 18 858 207 972 7 1085 62 1188 75 1295 38 1404 81
753 158 860 35 975 19 1086 189 1190 233 1297 198 1407 47
754 19 861 14 977 15 1087 112 1191 196 1298 399 1409 194
756 45 862 349 979 178 1089 91 1193 173 1300 75 1410 383
758 233 865 1 982 177 1090 79 1196 281 1302 77 1412 125
759 98 866 75 983 230 1092 23 1198 405 1305 326 1414 429
761 3 868 145 985 222 1094 57 1199 114 1306 39 1415 282
762 83 870 301 986 3 1095 139 1201 171 1308 495 1417 342
767 168 871 378 988 121 1097 14 1202 287 1310 333 1420 33
769 120 873 352 990 161 1098 83 1204 43 1311 476 1422 49
772 7 876 149 991 39 1100 35 1206 513 1313 164 1423 15
774 185 879 11 993 62 1102 117 1207 273 1314 19 1425 28
775 93 881 78 994 223 1103 65 1209 118 1319 129 1426 103
777 29 882 99 996 65 1105 21 1210 243 1321 52 1428 27
778 375 884 173 998 101 1106 195 1212 203 1324 337 1430 33
780 13 887 147 999 59 1108 327 1214 257 1326 397 1431 17
782 329 889 127 1001 17 1110 417 1215 302 1327 277 1433 387
783 68 890 183 1007 75 1111 13 1217 393 1329 73 1434 363
785 92 892 31 1009 55 1113 107 1218 91 1332 95 1436 83
791 30 894 173 1010 99 1116 59 1220 413 1334 617 1438 357
793 253 895 12 1012 115 1119 283 1223 255 1335 392 1441 322
794 143 897 113 1014 385 1121 62 1225 234 1337 75 1442 395
798 53 898 207 1015 186 1122 427 1226 167 1338 315 1444 595
799 25 900 1 1020 135 1126 105 1228 27 1340 125 1446 421
801 217 902 21 1022 317 1127 27 1230 433 1343 348 1447 195
804 75 903 35 1023 7 1129 103 1231 105 1345 553 1449 13
806 21 905 117 1025 294 1130 551 1233 151 1348 553 1452 315
807 7 906 123 1026 35 1134 129 1234 427 1350 237 1454 297
809 15 908 143 1028 119 1135 9 1236 49 1351 39 1455 52
810 159 911 204 1029 98 1137 277 1238 153 1353 371 1457 314
812 29 913 91 1030 93 1138 31 1239 4 1354 255 1458 243
814 21 916 183 1031 68 1140 141 1241 54 1356 131 1460 185
815 333 918 77 1033 108 1142 357 1242 203 1358 117 1463 575
817 52 919 36 1034 75 1145 227 1246 25 1359 98 1465 39
818 119 921 221 1036 411 1146 131 1247 14 1361 56 1466 311
820 123 924 31 1039 21 1148 23 1249 187 1362 655 1468 181
822 17 926 365 1041 412 1151 90 1252 97 1364 239 1470 49
823 9 927 403 1042 439 1153 241 1255 589 1366 1 1471 25
825 38 930 31 1044 41 1154 75 1257 289 1367 134 1473 77
826 255 932 177 1047 10 1156 307 1260 21 1369 88 1476 21
828 189 935 417 1049 141 1158 245 1263 77 1372 181 1478 69

Table 4.7: Irreducible trinomials xm+xk+1 overZ2. For eachm, 723 ≤ m ≤ 1478, for which an
irreducible trinomial of degreem inZ2[x] exists, the table gives the smallest k for which xm+xk+1
is irreducible over Z2.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

160 Ch. 4 Public-Key Parameters

being primitive is approximately φ(pm − 1)/pm. Using the lower bound for the Euler phi
function (Fact 2.102), this probability can be seen to be at least 1/(6 ln ln pm). This sug-
gests the following algorithm for generating primitive polynomials.

4.78 Algorithm Generating a random monic primitive polynomial over Zp

INPUT: a prime p, integer m ≥ 1, and the distinct prime factors r1, r2, . . . , rt of pm − 1.
OUTPUT: a monic primitive polynomial f(x) of degree m in Zp[x].

1. Repeat the following:

1.1 Use Algorithm 4.70 to generate a random monic irreducible polynomial f(x)
of degree m in Zp[x].

1.2 Use Algorithm 4.77 to test whether f(x) is primitive.

Until f(x) is primitive.
2. Return(f(x)).

For each m, 1 ≤ m ≤ 229, Table 4.8 lists a polynomial of degree m that is primitive
over Z2. If there exists a primitive trinomial f(x) = xm + xk + 1, then the trinomial with
the smallest k is listed. If no primitive trinomial exists, then a primitive pentanomial of the
form f(x) = xm + xk1 + xk2 + xk3 + 1 is listed.

If pm − 1 is prime, then Fact 4.76 implies that every irreducible polynomial of de-
greem in Zp[x] is also primitive. Table 4.9 gives either a primitive trinomial or a primitive
pentanomial of degree m over Z2 where m is an exponent of one of the first 27 Mersenne
primes (Definition 4.35).

4.6 Generators and elements of high order

Recall (Definition 2.169) that ifG is a (multiplicative) finite group, the order of an element
a ∈ G is the least positive integer t such that at = 1. If there are n elements in G, and if
a ∈ G is an element of order n, then G is said to be cyclic and a is called a generator or a
primitive element ofG (Definition 2.167). Of special interest for cryptographic applications
are the multiplicative group Z∗p of the integers modulo a prime p, and the multiplicative
group F∗2m of the finite field F2m of characteristic two; these groups are cyclic (Fact 2.213).
Also of interest is the group Z∗n (Definition 2.124), where n is the product of two distinct
odd primes. This section deals with the problem of finding generators and other elements
of high order in Z∗p, F

∗
2m , and Z∗n. See §2.5.1 for background in group theory and §2.6 for

background in finite fields.
Algorithm 4.79 is an efficient method for determining the order of a group element,

given the prime factorization of the group ordern. The correctness of the algorithm follows
from the fact that the order of an element must divide n (Fact 2.171).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.6 Generators and elements of high order 161

k or k or k or k or
m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)

2 1 59 22, 21, 1 116 71, 70, 1 173 100, 99, 1
3 1 60 1 117 20, 18, 2 174 13
4 1 61 16, 15, 1 118 33 175 6
5 2 62 57, 56, 1 119 8 176 119, 118, 1
6 1 63 1 120 118, 111, 7 177 8
7 1 64 4, 3, 1 121 18 178 87
8 6, 5, 1 65 18 122 60, 59, 1 179 34, 33, 1
9 4 66 10, 9, 1 123 2 180 37, 36, 1

10 3 67 10, 9, 1 124 37 181 7, 6, 1
11 2 68 9 125 108, 107, 1 182 128, 127, 1
12 7, 4, 3 69 29, 27, 2 126 37, 36, 1 183 56
13 4, 3, 1 70 16, 15, 1 127 1 184 102, 101, 1
14 12, 11, 1 71 6 128 29, 27, 2 185 24
15 1 72 53, 47, 6 129 5 186 23, 22, 1
16 5, 3, 2 73 25 130 3 187 58, 57, 1
17 3 74 16, 15, 1 131 48, 47, 1 188 74, 73, 1
18 7 75 11, 10, 1 132 29 189 127, 126, 1
19 6, 5, 1 76 36, 35, 1 133 52, 51, 1 190 18, 17, 1
20 3 77 31, 30, 1 134 57 191 9
21 2 78 20, 19, 1 135 11 192 28, 27, 1
22 1 79 9 136 126, 125, 1 193 15
23 5 80 38, 37, 1 137 21 194 87
24 4, 3, 1 81 4 138 8, 7, 1 195 10, 9, 1
25 3 82 38, 35, 3 139 8, 5, 3 196 66, 65, 1
26 8, 7, 1 83 46, 45, 1 140 29 197 62, 61, 1
27 8, 7, 1 84 13 141 32, 31, 1 198 65
28 3 85 28, 27, 1 142 21 199 34
29 2 86 13, 12, 1 143 21, 20, 1 200 42, 41, 1
30 16, 15, 1 87 13 144 70, 69, 1 201 14
31 3 88 72, 71, 1 145 52 202 55
32 28, 27, 1 89 38 146 60, 59, 1 203 8, 7, 1
33 13 90 19, 18, 1 147 38, 37, 1 204 74, 73, 1
34 15, 14, 1 91 84, 83, 1 148 27 205 30, 29, 1
35 2 92 13, 12, 1 149 110, 109, 1 206 29, 28, 1
36 11 93 2 150 53 207 43
37 12, 10, 2 94 21 151 3 208 62, 59, 3
38 6, 5, 1 95 11 152 66, 65, 1 209 6
39 4 96 49, 47, 2 153 1 210 35, 32, 3
40 21, 19, 2 97 6 154 129, 127, 2 211 46, 45, 1
41 3 98 11 155 32, 31, 1 212 105
42 23, 22, 1 99 47, 45, 2 156 116, 115, 1 213 8, 7, 1
43 6, 5, 1 100 37 157 27, 26, 1 214 49, 48, 1
44 27, 26, 1 101 7, 6, 1 158 27, 26, 1 215 23
45 4, 3, 1 102 77, 76, 1 159 31 216 196, 195, 1
46 21, 20, 1 103 9 160 19, 18, 1 217 45
47 5 104 11, 10, 1 161 18 218 11
48 28, 27, 1 105 16 162 88, 87, 1 219 19, 18, 1
49 9 106 15 163 60, 59, 1 220 15, 14, 1
50 27, 26, 1 107 65, 63, 2 164 14, 13, 1 221 35, 34, 1
51 16, 15, 1 108 31 165 31, 30, 1 222 92, 91, 1
52 3 109 7, 6, 1 166 39, 38, 1 223 33
53 16, 15, 1 110 13, 12, 1 167 6 224 31, 30, 1
54 37, 36, 1 111 10 168 17, 15, 2 225 32
55 24 112 45, 43, 2 169 34 226 58, 57, 1
56 22, 21, 1 113 9 170 23 227 46, 45, 1
57 7 114 82, 81, 1 171 19, 18, 1 228 148, 147, 1
58 19 115 15, 14, 1 172 7 229 64, 63, 1

Table 4.8: Primitive polynomials over Z2. For each m, 1 ≤ m ≤ 229, an exponent k is given for
which the trinomial xm+xk+1 is primitive over Z2. If no such trinomial exists, a triple of exponents
(k1, k2, k3) is given for which the pentanomial xm + xk1 + xk2 + xk3 + 1 is primitive over Z2.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

162 Ch. 4 Public-Key Parameters

j m k (k1, k2, k3)

1 2 1
2 3 1
3 5 2
4 7 1, 3
5 13 none (4,3,1)
6 17 3, 5, 6
7 19 none (5,2,1)
8 31 3, 6, 7, 13
9 61 none (43,26,14)
10 89 38
11 107 none (82,57,31)
12 127 1, 7, 15, 30, 63
13 521 32, 48, 158, 168
14 607 105, 147, 273
15 1279 216, 418
16 2203 none (1656,1197,585)
17 2281 715, 915, 1029
18 3217 67, 576
19 4253 none (3297,2254,1093)
20 4423 271, 369, 370, 649, 1393, 1419, 2098
21 9689 84, 471, 1836, 2444, 4187
22 9941 none (7449,4964,2475)
23 11213 none (8218,6181,2304)
24 19937 881, 7083, 9842
25 21701 none (15986,11393,5073)
26 23209 1530, 6619, 9739
27 44497 8575, 21034

Table 4.9: Primitive polynomials of degreem overZ2, 2m−1 a Mersenne prime. For each exponent
m = Mj of the first 27 Mersenne primes, the table lists all values of k, 1 ≤ k ≤ m/2, for which
the trinomial xm + xk + 1 is irreducible over Z2. If no such trinomial exists, a triple of exponents
(k1, k2, k3) is listed such that the pentanomial xm + xk1 + xk2 + xk3 + 1 is irreducible over Z2.

4.79 Algorithm Determining the order of a group element

INPUT: a (multiplicative) finite groupG of order n, an element a ∈ G, and the prime fac-
torization n = pe11 p

e2
2 · · · p

ek
k .

OUTPUT: the order t of a.

1. Set t←n.
2. For i from 1 to k do the following:

2.1 Set t←t/peii .
2.2 Compute a1←at.
2.3 While a1 6= 1 do the following: compute a1←a

pi
1 and set t←t · pi.

3. Return(t).

Suppose now thatG is a cyclic group of ordern. Then for any divisor d ofn the number
of elements of order d inG is exactlyφ(d) (Fact 2.173(ii)), whereφ is the Euler phi function
(Definition 2.100). In particular,G has exactly φ(n) generators, and hence the probability
of a random element in G being a generator is φ(n)/n. Using the lower bound for the Eu-
ler phi function (Fact 2.102), this probability can be seen to be at least 1/(6 ln lnn). This

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.6 Generators and elements of high order 163

suggests the following efficient randomized algorithm for finding a generator of a cyclic
group.

4.80 Algorithm Finding a generator of a cyclic group

INPUT: a cyclic group G of order n, and the prime factorization n = pe11 p
e2
2 · · · p

ek
k .

OUTPUT: a generator α of G.

1. Choose a random element α in G.
2. For i from 1 to k do the following:

2.1 Compute b←αn/pi .
2.2 If b = 1 then go to step 1.

3. Return(α).

4.81 Note (group elements of high order) In some situations it may be desirable to have an el-
ement of high order, and not a generator. Given a generator α in a cyclic groupG of order
n, and given a divisor d of n, an element β of order d in G can be efficiently obtained as
follows: β = αn/d. If q is a prime divisor of the order n of a cyclic group G, then the fol-
lowing method finds an element β ∈ G of order q without first having to find a generator
of G: select a random element g ∈ G and compute β = gn/q; repeat until β 6= 1.

4.82 Note (generators of F∗2m) There are two basic approaches to finding a generator of F∗2m .
Both techniques require the factorization of the order of F∗2m , namely 2m − 1.

(i) Generate a monic primitive polynomial f(x) of degreem over Z2 (Algorithm 4.78).
The finite field F2m can then be represented as Z2[x]/(f(x)), the set of all polyno-
mials over Z2 modulo f(x), and the element α = x is a generator.

(ii) Select the method for representing elements of F2m first. Then use Algorithm 4.80
with G = F∗2m and n = 2m − 1 to find a generator α of F∗2m .

If n = pq, where p and q are distinct odd primes, thenZ∗n is a non-cyclic group of order
φ(n) = (p − 1)(q − 1). The maximum order of an element in Z∗n is lcm(p − 1, q − 1).
Algorithm 4.83 is a method for generating such an element which requires the factorizations
of p− 1 and q − 1.

4.83 Algorithm Selecting an element of maximum order in Z∗n, where n = pq

INPUT: two distinct odd primes, p, q, and the factorizations of p− 1 and q − 1.
OUTPUT: an element α of maximum order lcm(p− 1, q − 1) in Z∗n, where n = pq.

1. Use Algorithm 4.80 with G = Z∗p and n = p− 1 to find a generator a of Z∗p.
2. Use Algorithm 4.80 with G = Z∗q and n = q − 1 to find a generator b of Z∗q .
3. Use Gauss’s algorithm (Algorithm 2.121) to find an integer α, 1 ≤ α ≤ n − 1,

satisfying α ≡ a (mod p) and α ≡ b (mod q).
4. Return(α).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

164 Ch. 4 Public-Key Parameters

4.6.1 Selecting a prime p and generator of Z∗p
In cryptographic applications for which a generator of Z∗p is required, one usually has the
flexibility of selecting the prime p. To guard against the Pohlig-Hellman algorithm for com-
puting discrete logarithms (Algorithm 3.63), a security requirement is that p−1 should con-
tain a “large” prime factor q. In this context, “large” means that the quantity

√
q represents

an infeasible amount of computation; for example, q ≥ 2160. This suggests the following
algorithm for selecting appropriate parameters (p, α).

4.84 Algorithm Selecting a k-bit prime p and a generator α of Z∗p

INPUT: the required bitlength k of the prime and a security parameter t.
OUTPUT: a k-bit prime p such that p− 1 has a prime factor≥ t, and a generator α of Z∗p.

1. Repeat the following:

1.1 Select a random k-bit prime p (for example, using Algorithm 4.44).
1.2 Factor p− 1.

Until p− 1 has a prime factor≥ t.
2. Use Algorithm 4.80 with G = Z∗p and n = p− 1 to find a generator α of Z∗p.
3. Return(p,α).

Algorithm 4.84 is relatively inefficient as it requires the use of an integer factorization
algorithm in step 1.2. An alternative approach is to generate the prime p by first choosing
a large prime q and then selecting relatively small integersR at random until p = 2Rq+1
is prime. Since p− 1 = 2Rq, the factorization of p− 1 can be obtained by factoringR. A
particularly convenient situation occurs by imposing the conditionR = 1. In this case the
factorization of p − 1 is simply 2q. Furthermore, since φ(p − 1) = φ(2q) = φ(2)φ(q) =
q − 1, the probability that a randomly selected element α ∈ Z∗p is a generator is q−12q ≈

1
2 .

4.85 Definition A safe prime p is a prime of the form p = 2q + 1 where q is prime.

Algorithm 4.86 generates a safe (probable) prime p and a generator of Z∗p.

4.86 Algorithm Selecting a k-bit safe prime p and a generator α of Z∗p

INPUT: the required bitlength k of the prime.
OUTPUT: a k-bit safe prime p and a generator α of Z∗p.

1. Do the following:

1.1 Select a random (k − 1)-bit prime q (for example, using Algorithm 4.44).
1.2 Compute p←2q+1, and test whether p is prime (for example, using trial divi-

sion by small primes and Algorithm 4.24).

Until p is prime.
2. Use Algorithm 4.80 to find a generator α of Z∗p.
3. Return(p,α).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.7 Notes and further references 165

4.7 Notes and further references
§4.1

Several books provide extensive treatments of primality testing including those by Bres-
soud [198], Bach and Shallit [70], and Koblitz [697]. The book by Kranakis [710] offers
a more theoretical approach. Cohen [263] gives a comprehensive treatment of modern pri-
mality tests. See also the survey articles by A. Lenstra [747] and A. Lenstra and H. Lenstra
[748]. Facts 4.1 and 4.2 were proven in 1837 by Dirichlet. For proofs of these results, see
Chapter 16 of Ireland and Rosen [572]. Fact 4.3 is due to Rosser and Schoenfeld [1070].
Bach and Shallit [70] have further results on the distribution of prime numbers.

§4.2
Fact 4.13(i) was proven by Alford, Granville, and Pomerance [24]; see also Granville [521].
Fact 4.13(ii) is due to Pomerance, Selfridge, and Wagstaff [996]. Pinch [974] showed that
there are 105212 Carmichael numbers up to 1015.

The Solovay-Strassen probabilistic primality test (Algorithm 4.18) is due to Solovay and
Strassen [1163], as modified by Atkin and Larson [57].

Fact 4.23 was proven independently by Monier [892] and Rabin [1024]. The Miller-Rabin
test (Algorithm 4.24) originated in the work of Miller [876] who presented it as a non-
probabilistic polynomial-timealgorithm assuming the correctness of the Extended Riemann
Hypothesis (ERH). Rabin [1021, 1024] rephrased Miller’s algorithm as a probabilistic pri-
mality test. Rabin’s algorithm required a small number of gcd computations. The Miller-
Rabin test (Algorithm 4.24) is a simplification of Rabin’s algorithm which does not require
any gcd computations, and is due to Knuth [692, p.379]. Arazi [55], making use of Mont-
gomery modular multiplication (§14.3.2), showed how the Miller-Rabin test can be imple-
mented by “divisionless modular exponentiations” only, yielding a probabilistic primality
test which does not use any division operations.

Miller [876], appealing to the work of Ankeny [32], proved under assumption of the Ex-
tended Riemann Hypothesis that, if n is an odd composite integer, then its least strong wit-
ness is less than c(lnn)2, where c is some constant. Bach [63] proved that this constant
may be taken to be c = 2; see also Bach [64]. As a consequence, one can test n for pri-
mality in O((lg n)5) bit operations by executing the Miller-Rabin algorithm for all bases
a ≤ 2(lnn)2. This gives a deterministic polynomial-time algorithm for primality testing,
under the assumption that the ERH is true.

Table 4.1 is from Jaeschke [630], building on earlier work of Pomerance, Selfridge, and
Wagstaff [996]. Arnault [56] found the following 46-digit composite integer

n = 1195068768795265792518361315725116351898245581

that is a strong pseudoprime to all the 11 prime bases up to 31. Arnault also found a 337-
digit composite integer which is a strong pseudoprime to all 46 prime bases up to 199.

The Miller-Rabin test (Algorithm 4.24) randomly generates t independent bases a and tests
to see if each is a strong witness for n. Let n be an odd composite integer and let t =
d 12 lgne. In situations where random bits are scarce, one may choose instead to generate
a single random base a and use the bases a, a + 1, . . . , a + t − 1. Bach [66] proved that
for a randomly chosen integer a, the probability that a, a+ 1, . . . , a+ t− 1 are all strong
liars for n is bounded above by n−1/4+o(1); in other words, the probability that the Miller-
Rabin algorithm using these bases mistakenly declares an odd composite integer “prime”
is at most n−1/4+o(1). Peralta and Shoup [969] later improved this bound to n−1/2+o(1).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

166 Ch. 4 Public-Key Parameters

Monier [892] gave exact formulas for the number of Fermat liars, Euler liars, and strong
liars for composite integers. One consequence of Monier’s formulas is the following im-
provement (in the case where n is not a prime power) of Fact 4.17 (see Kranakis [710,
p.68]). If n ≥ 3 is an odd composite integer having r distinct prime factors, and if n ≡ 3
(mod 4), then there are at most φ(n)/2r−1 Euler liars for n. Another consequence is the

following improvement (in the case where n has at least three distinct prime factors) of
Fact 4.23. If n ≥ 3 is an odd composite integer having r distinct prime factors, then there
are at most φ(n)/2r−1 strong liars forn. Erdös and Pomerance [373] estimated the average
number of Fermat liars, Euler liars, and strong liars for composite integers. Fact 4.30(ii) was
proven independently by Atkin and Larson [57], Monier [892], and Pomerance, Selfridge,
and Wagstaff [996].

Pinch [975] reviewed the probabilistic primality tests used in the Mathematica, Maple V,
Axiom, and Pari/GP computer algebra systems. Some of these systems use a probabilistic
primality test known as the Lucas test; a description of this test is provided by Pomerance,
Selfridge, and Wagstaff [996].

§4.3
If a numbern is composite, providing a non-trivial divisor ofn is evidence of its composite-
ness that can be verified in polynomial time (by long division). In other words, the decision
problem “is n composite?” belongs to the complexity class NP (cf. Example 2.65). Pratt
[1000] used Fact 4.38 to show that this decision problem is also in co-NP. That is, if n is
prime there exists some evidence of this (called a certificate of primality) that can be veri-
fied in polynomial time. Note that the issue here is not in finding such evidence, but rather
in determining whether such evidence exists which, if found, allows efficient verification.
Pomerance [992] improved Pratt’s results and showed that every prime n has a certificate
of primality which requiresO(lnn) multiplications modulo n for its verification.

Primality of the Fermat number Fk = 22
k

+ 1 can be determined in deterministic polyno-
mial time by Pepin’s test: for k ≥ 2, Fk is prime if and only if 5(Fk−1)/2 ≡ −1 (mod Fk).
For the history behind Pepin’s test and the Lucas-Lehmer test (Algorithm 4.37), see Bach
and Shallit [70].

In Fact 4.38, the integer a does not have to be the same for all q. More precisely, Brillhart
and Selfridge [212] showed that Fact 4.38 can be refined as follows: an integer n ≥ 3 is
prime if and only if for each prime divisor q of n − 1, there exists an integer aq such that

an−1q ≡ 1 (mod n) and a(n−1)/qq 6≡ 1 (mod n). The same is true of Fact 4.40, which is
due to Pocklington [981]. For a proof of Fact 4.41, see Maurer [818]. Fact 4.42 is due to
Brillhart, Lehmer, and Selfridge [210]; a simplified proof is given by Maurer [818].

The original Jacobi sum test was discovered by Adleman, Pomerance, and Rumely [16].
The algorithm was simplified, both theoretically and algorithmically, by Cohen and H.
Lenstra [265]. Cohen and A. Lenstra [264] give an implementation report of the Cohen-
Lenstra Jacobi sum test; see also Chapter 9 of Cohen [263]. Further improvements of the
Jacobi sum test are reported by Bosma and van der Hulst [174].

Elliptic curves were first used for primality proving by Goldwasser and Kilian [477], who
presented a randomized algorithm which has an expected running time of O((ln n)11) bit
operations for most inputs n. Subsequently, Adleman and Huang [13] designed a primality
proving algorithm using hyperelliptic curves of genus two whose expected running time
is polynomial for all inputs n. This established that the decision problem “is n prime?”
is in the complexity class RP (Definition 2.77(ii)). The Goldwasser-Kilian and Adleman-
Huang algorithms are inefficient in practice. Atkin’s test, and an implementation of it, is
extensively described by Atkin and Morain [58]; see also Chapter 9 of Cohen [263]. The

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§4.7 Notes and further references 167

largest number proven prime as of 1996 by a general purpose primality proving algorithm is
a 1505-decimal digit number, accomplished by Morain [903] using Atkin’s test. The total
time for the computation was estimated to be 4 years of CPU time distributed among 21
SUN 3/60 workstations. See also Morain [902] for an implementation report on Atkin’s
test which was used to prove the primality of the 1065-decimal digit number (23539+1)/3.

§4.4
A proof of Mertens’s theorem can be found in Hardy and Wright [540]. The optimal trial
division bound (Note 4.45) was derived by Maurer [818]. The discussion (Note 4.47) on the
probability P (X|Yt) is from Beauchemin et al. [81]; the result mentioned in the last sen-
tence of this note is due to Kim and Pomerance [673]. Fact 4.48 was derived by Damgård,
Landrock, and Pomerance [300], building on earlier work of Erdös and Pomerance [373],
Kim and Pomerance [673], and Damgård and Landrock [299]. Table 4.3 is Table 2 of Dam-
gård, Landrock, and Pomerance [300]. The suggestions to first do a Miller-Rabin test with
base a = 2 (Remark 4.50) and to do an incremental search (Note 4.51) in Algorithm 4.44
were made by Brandt, Damgård, and Landrock [187]. The error and failure probabilities
for incremental search (Note 4.51(i)) were obtained by Brandt and Damgård [186]; consult
this paper for more concrete estimates of these probabilities.

Algorithm 4.53 for generating strong primes is due to Gordon [514, 513]. Gordon originally
proposed computing p0 = (sr−1− rs−1) mod rs in step 3. Kaliski (personal communica-
tion, April 1996) proposed the modified formula p0 = (2sr−2 mod r)s − 1 which can be
computed more efficiently. Williams and Schmid [1249] proposed an algorithm for gener-
ating strong primes p with the additional constraint that p− 1 = 2q where q is prime; this
algorithm is not as efficient as Gordon’s algorithm. Hellman and Bach [550] recommended
an additional constraint on strong primes, specifying that s − 1 (where s is a large prime
factor of p+1) must have a large prime factor (see §15.2.3(v)); this thwarts cycling attacks
based on Lucas sequences.

The NIST method for prime generation (Algorithm 4.56) is that recommended by the NIST
Federal Information Processing Standards Publication (FIPS) 186 [406].

Fact 4.59 and Algorithm 4.62 for provable prime generation are derived from Maurer [818].
Algorithm 4.62 is based on that of Shawe-Taylor [1123]. Maurer notes that the total diver-
sity of reachable primes using the original version of his algorithm is roughly 10% of all
primes. Maurer also presents a more complicated algorithm for generating provable primes
with a better diversity than Algorithm 4.62, and provides extensive implementation details
and analysis of the expected running time. Maurer [812] provides heuristic justification that
Algorithm 4.62 generates primes with virtually uniform distribution. Mihailescu [870] ob-
served that Maurer’s algorithm can be improved by using the Eratosthenes sieve method
for trial division (in step 8.2 of Algorithm 4.62) and by searching for a prime n in an appro-
priate interval of the arithmetic progression 2q+1, 4q+1, 6q+1, . . . instead of generating
R’s at random until n = 2Rq+1 is prime. The second improvement comes at the expense
of a reduction of the set of primes which may be produced by the algorithm. Mihailescu’s
paper includes extensive analysis and an implementation report.

§4.5
Lidl and Niederreiter [764] provide a comprehensive treatment of irreducible polynomials;
proofs of Facts 4.67 and 4.68 can be found there.

Algorithm 4.69 for testing a polynomial for irreducibility is due to Ben-Or [109]. The fast-
est algorithm known for generating irreducible polynomials is due to Shoup [1131] and has
an expected running time ofO(m3 lgm+m2 lg p) Zp-operations. There is no determinis-
tic polynomial-time algorithm known for finding an irreducible polynomial of a specified

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

168 Ch. 4 Public-Key Parameters

degree m in Zp[x]. Adleman and Lenstra [14] give a deterministic algorithm that runs in
polynomial time under the assumption that the ERH is true. The best deterministic algo-
rithm known is due to Shoup [1129] and takes O(m4

√
p) Zp-operations, ignoring powers

of logm and log p. Gordon [512] presents an improved method for computing minimum
polynomials of elements in F2m .

Zierler and Brillhart [1271] provide a table of all irreducible trinomials of degree ≤ 1000
in Z2[x]. Blake, Gao, and Lambert [146] extended this list to all irreducible trinomials of
degree≤ 2000 in Z2[x]. Fact 4.75 is from their paper.

Table 4.8 extends a similar table by Stahnke [1168]. The primitive pentanomials xm +
xk1 + xk2 + xk3 + 1 listed in Table 4.8 have the following properties: (i) k1 = k2 + k3;
(ii) k2 > k3; and (iii) k3 is as small as possible, and for this particular value of k3, k2 is
as small as possible. The rational behind this form is explained in Stahnke’s paper. For
each m < 5000 for which the factorization of 2m − 1 is known, Živković [1275, 1276]
gives a primitive trinomial in Z2[x], one primitive polynomial in Z2[x] having five non-
zero terms, and one primitive polynomial in Z2[x] having seven non-zero terms, provided
that such polynomials exist. The factorizations of 2m − 1 are known for all m ≤ 510 and
for some additional m ≤ 5000. A list of such factorizations can be found in Brillhart et
al. [211] and updates of the list are available by anonymous ftp from sable.ox.ac.uk
in the /pub/math/cunningham/ directory. Hansen and Mullen [538] describe some
improvements to Algorithm 4.78 for generating primitive polynomials. They also give ta-
bles of primitive polynomials of degree m in Zp[x] for each prime power pm ≤ 1050 with
p ≤ 97. Moreover, for each such p and m, the primitive polynomial of degree m over Zp
listed has the smallest number of non-zero coefficients among all such polynomials.

The entries of Table 4.9 were obtained from Zierler [1270] for Mersenne exponents Mj ,
1 ≤ j ≤ 23, and from Kurita and Matsumoto [719] for Mersenne exponentsMj , 24 ≤ j ≤
27.

Let f(x) ∈ Zp[x] be an irreducible polynomial of degree m, and consider the finite field
Fpm = Zp[x]/(f(x)). Then f(x) is called a normal polynomial if the set {x, xp, xp

2

, . . . ,
xp
m−1
} forms a basis for Fpm over Zp; such a basis is called a normal basis. Mullin et

al. [911] introduced the concept of an optimal normal basis in order to reduce the hardware
complexity of multiplying field elements in the finite field F2m . A VLSI implementation of
the arithmetic in F2m which uses optimal normal bases is described by Agnew et al. [18]. A
normal polynomial which is also primitive is called a primitive normal polynomial. Dav-
enport [301] proved that for any prime p and positive integer m there exists a primitive
normal polynomial of degreem in Zp[x]. See also Lenstra and Schoof [760] who general-
ized this result from prime fields Zp to prime power fields Fq. Morgan and Mullen [905]
give a primitive normal polynomial of degreem over Zp for each prime power pm ≤ 1050

with p ≤ 97. Moreover, each polynomial has the smallest number of non-zero coefficients
among all primitive normal polynomials of degreem overZp; in fact, each polynomial has
at most five non-zero terms.

§4.6
No polynomial-time algorithm is known for finding generators, or even for testing whether
an element is a generator, of a finite field Fq if the factorization of q−1 is unknown. Shoup
[1130] considered the problem of deterministically generating in polynomial time a subset
of Fq that contains a generator, and presented a solution to the problem for the case where
the characteristic p of Fq is small (e.g. p = 2). Maurer [818] discusses how his algorithm
(Algorithm 4.62) can be used to generate the parameters (p, α), where p is a provable prime
and α is a generator of Z∗p.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

